DOI QR코드

DOI QR Code

New Motor Parameter Estimation Method of Surface-mounted Permanent Magnet Motors

표면 부착형 영구자석 전동기의 새로운 상수 추정 방법

  • Lee, Dong-Myung (School of Electronic and Electrical Engineering, Hongik University)
  • 이동명 (홍익대학교 전자전기공학부)
  • Received : 2019.01.21
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

This paper proposes a new motor parameter estimation method. Because the proposed method is based on difference equations, it does not affect the error in the voltage magnitude so called dead-time effect. Information on the motor constant may be needed to improve the motor control performance. For example, a control technique called DTC (Direct Torque Control) requires a motor constant when calculating the torque and flux magnitude. As another example, in the case of predictive control, information on the motor parameters is required to generate voltage references. Because the constant of the motor fluctuates according to the driving environment, it is essential to estimate the correct motor constant because the control performance is degraded when incorrect motor information is used. In the proposed scheme, the motor constant estimated based on the voltage difference equation is obtained using the RLS (Recursive Least Square) technique. The RLS algorithm is applied to obtain the value through an iterative calculation so that the estimation performance is robust to noise. The simulation results carried out with surface mounted permanent magnet motors confirmed the validity of the proposed method.

본 논문은 전동기 상수 추정 방법을 제안한다. 제안하는 기법은 전동기 전압방정식을 차동식 형태로 전개한 수식에 기반한다. 차동식 형태를 이용함으로써 전동기 상수 추정시 사용되는 전압 정보에 존재하는 크기 오차인 데드타임의 영향을 배제한다. 전동기의 상수값은 전동기 제어 성능 향상을 위해서 필요할 때가 있다. 예를 들면 DTC(Direct Torque Control) 제어 기법에는 토오크 및 자속 크기의 연산시 전동기의 상수를 알아야한다. 다른 예로서 예측제어의 경우 지령치 전압 생성을 위해서는 정확한 전동기의 상수 값의 정보가 필요하다. 전동기의 상수는 구동 환경에 따라 변동하는 값이므로 부정확한 전동기 상수 사용시 제어 성능의 저하를 가져온다. 따라서, 정확한 전동기 상수의 추정이 필요하다. 제안하는 기법에서 전압차동식에 기초하여 추정되는 전동기 상수는 RLS(Recursive Least Square) 기법에 의해 구해진다. 본 연구에서는 단순 수식에 의한 형태로 전동기의 상수를 추정하지 않고, RLS 알고리즘을 적용하여 노이즈에 강인하게 전동기 상수를 추정한다. 표면 부착형 영구자석 전동기의 제어시스템에 적용하여 제안하는 기법의 타당성을 보인다.

Keywords

SHGSCZ_2019_v20n4_517_f0001.png 이미지

Fig. 1. Matlab/simulink model of the proposed scheme

SHGSCZ_2019_v20n4_517_f0002.png 이미지

Fig. 2. Simulation waveform with initial value Ls=15 mH(actual value 30 mH): from top to bottom, estimated inductance, speed command value(dotted line) and actual speed(solid line)

SHGSCZ_2019_v20n4_517_f0003.png 이미지

Fig. 3. Simulation waveform with initial value Ls=60 mH(actual value 30 mH): from top to bottom, estimated inductance, speed command value(dotted line) and actual speed(solid line)

SHGSCZ_2019_v20n4_517_f0004.png 이미지

Fig. 4. Simulation waveform of estimated flux-linkage with initial value λf=0.05 v-s(actual value: 0.15 v-s): from top to bottom, estimated flux-linkage, q-axis current command and actual one

SHGSCZ_2019_v20n4_517_f0005.png 이미지

Fig. 5. Simulation waveform of estimated flux-linkage with initial value λf=0.25 v-s(actual value: 0.15 v-s): from top to bottom, estimated flux-linkage, q-axis current command and actual one

SHGSCZ_2019_v20n4_517_f0006.png 이미지

Fig. 6. Simulation waveform of parameter estimation when the stator resistance value is set to 12.0 Ω, twice the actual value: from top to bottom, motor speed, estimated stator flux-linkage, estimated stator inductance(initial value 0.08 v-s in the flux linkage, and initial value 80 mH for stator inductance)

Table 1. System specifications used in simulation study

SHGSCZ_2019_v20n4_517_t0001.png 이미지

References

  1. X. Zhang, B. Hou, and Y. Mei, "Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer", IEEE Trans. on Power Elec., Vol.32, No.5, pp.3818-3834, May 2017. DOI: https://doi.org/10.1109/TPEL.2016.2592534
  2. J. Li, H. P. Ren, and Y. R. Zhong, "Robust speed control of induction motor drives using first-order auto-disturbance rejection controllers", IEEE Trans. on Indus. Appli., Vol.51, No.1, pp.712-720, Jan./Feb. 2015. DOI: https://doi.org/10.1109/TIA.2014.2330062
  3. F. Chai, P. X. Ling, Y. L. Pei, and S. Cheng, "Magnet shape optimization of surface-mounted permanent-magnet motors to reduce harmonic iron losses", IEEE Trans. on Magnetics, Vol.52, No.7, Jul. 2016, Art. no. 6301304. DOI: https://doi.org/10.1109/TMAG.2016.2524010
  4. H. B. Kim and R. D. Lorenz, "Improved current regulators for IPM machine drives using on-line parameter estimation", IEEE IAS annual meeting, Vol.1, pp.86-91, 2002. DOI: https://doi.org/10.1109/IAS.2002.1044071
  5. R. L. Shrestha and J. K. Seok, "Online compensation of parameter variation effects for robust interior PM synchronous motor drives", Journal of Power Electronics, Vol.11, No.5, pp.713-718, 2011. DOI: https://doi.org/10.6113/JPE.2011.11.5.713
  6. Y. S. Jeong and S. K. Sul, "Adaptive flux observer with on-line inductance estimation of an IPMSM considering magnetic saturation", IEEE Power Elect. Spec. Conf., pp.2467-2473, June 2005. DOI: https://doi.org/10.1109/PESC.2005.1581979
  7. X. Liu, T. Wang, N. Jin, S. Habib, M. Ali, X. Yang, and H. Tang, "Analysis and elimination of dead-time effect in wireless power transfer system", Energies, Vol.11, No.6, 2018. DOI: https://doi.org/10.3390/en11061577
  8. T. Mannen, and H. Fujita, "Dead-time compensation method based on current ripple estimation", IEEE Trans. on Power Elect., Vol.30, No.7, pp.4016-4024, July 2015. DOI: https://doi.org/10.1109/TPEL.2014.2352716
  9. I. W. Chen, C. C. Wu, and W. C. Fang, "A wearable photoplethysmographic system realization with efficient motion artifact reduction method based on recursive least squares adaptive filtering algorithm", IEEE Inter. Conf. on Cons. Electr., 2018. DOI: https://doi.org/10.1109/ICCE-China.2018.8448495
  10. F. Ding, X. Liu, and M. Liu, "The recursive least squares identification algorithm for a class of Wiener nonlinear systems", Journal of the Franklin Insti., Vol.353, No.7, pp.1518-1526, May 2016. DOI: https://doi.org/10.1016/j.jfranklin.2016.02.013
  11. D. M. Lee, "Online parameter identification of SPM motors based on MRAS technique", International Journal of Electronics, Vol.104, No.4, pp.593-607, 2017. DOI: https://doi.org/10.1080/00207217.2016.122063