Fig. 1. Matlab/simulink model of the proposed scheme
Fig. 2. Simulation waveform with initial value Ls=15 mH(actual value 30 mH): from top to bottom, estimated inductance, speed command value(dotted line) and actual speed(solid line)
Fig. 3. Simulation waveform with initial value Ls=60 mH(actual value 30 mH): from top to bottom, estimated inductance, speed command value(dotted line) and actual speed(solid line)
Fig. 4. Simulation waveform of estimated flux-linkage with initial value λf=0.05 v-s(actual value: 0.15 v-s): from top to bottom, estimated flux-linkage, q-axis current command and actual one
Fig. 5. Simulation waveform of estimated flux-linkage with initial value λf=0.25 v-s(actual value: 0.15 v-s): from top to bottom, estimated flux-linkage, q-axis current command and actual one
Fig. 6. Simulation waveform of parameter estimation when the stator resistance value is set to 12.0 Ω, twice the actual value: from top to bottom, motor speed, estimated stator flux-linkage, estimated stator inductance(initial value 0.08 v-s in the flux linkage, and initial value 80 mH for stator inductance)
Table 1. System specifications used in simulation study
References
- X. Zhang, B. Hou, and Y. Mei, "Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer", IEEE Trans. on Power Elec., Vol.32, No.5, pp.3818-3834, May 2017. DOI: https://doi.org/10.1109/TPEL.2016.2592534
- J. Li, H. P. Ren, and Y. R. Zhong, "Robust speed control of induction motor drives using first-order auto-disturbance rejection controllers", IEEE Trans. on Indus. Appli., Vol.51, No.1, pp.712-720, Jan./Feb. 2015. DOI: https://doi.org/10.1109/TIA.2014.2330062
- F. Chai, P. X. Ling, Y. L. Pei, and S. Cheng, "Magnet shape optimization of surface-mounted permanent-magnet motors to reduce harmonic iron losses", IEEE Trans. on Magnetics, Vol.52, No.7, Jul. 2016, Art. no. 6301304. DOI: https://doi.org/10.1109/TMAG.2016.2524010
- H. B. Kim and R. D. Lorenz, "Improved current regulators for IPM machine drives using on-line parameter estimation", IEEE IAS annual meeting, Vol.1, pp.86-91, 2002. DOI: https://doi.org/10.1109/IAS.2002.1044071
- R. L. Shrestha and J. K. Seok, "Online compensation of parameter variation effects for robust interior PM synchronous motor drives", Journal of Power Electronics, Vol.11, No.5, pp.713-718, 2011. DOI: https://doi.org/10.6113/JPE.2011.11.5.713
- Y. S. Jeong and S. K. Sul, "Adaptive flux observer with on-line inductance estimation of an IPMSM considering magnetic saturation", IEEE Power Elect. Spec. Conf., pp.2467-2473, June 2005. DOI: https://doi.org/10.1109/PESC.2005.1581979
- X. Liu, T. Wang, N. Jin, S. Habib, M. Ali, X. Yang, and H. Tang, "Analysis and elimination of dead-time effect in wireless power transfer system", Energies, Vol.11, No.6, 2018. DOI: https://doi.org/10.3390/en11061577
- T. Mannen, and H. Fujita, "Dead-time compensation method based on current ripple estimation", IEEE Trans. on Power Elect., Vol.30, No.7, pp.4016-4024, July 2015. DOI: https://doi.org/10.1109/TPEL.2014.2352716
- I. W. Chen, C. C. Wu, and W. C. Fang, "A wearable photoplethysmographic system realization with efficient motion artifact reduction method based on recursive least squares adaptive filtering algorithm", IEEE Inter. Conf. on Cons. Electr., 2018. DOI: https://doi.org/10.1109/ICCE-China.2018.8448495
- F. Ding, X. Liu, and M. Liu, "The recursive least squares identification algorithm for a class of Wiener nonlinear systems", Journal of the Franklin Insti., Vol.353, No.7, pp.1518-1526, May 2016. DOI: https://doi.org/10.1016/j.jfranklin.2016.02.013
- D. M. Lee, "Online parameter identification of SPM motors based on MRAS technique", International Journal of Electronics, Vol.104, No.4, pp.593-607, 2017. DOI: https://doi.org/10.1080/00207217.2016.122063