• Title/Summary/Keyword: Constant rate model

Search Result 887, Processing Time 0.032 seconds

Investigated of Mathematical Model for the Specific Growth Rate of Ethanol Producing Microorganism, Saccharomyces cerevisiae ATCC 24858 (에탄올 생산 균주 Saccharomyces cerevisiae ATCC 248858의 비성장속도에 관한 수학적 모형연구)

  • 김휘동;허병기
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.730-734
    • /
    • 1998
  • The mathematical model of specific growth rate of Saccharomyces cerevisiae ATCC 24858 is proposed as a function of sugar and ethanol concentrations by the combination of Andrew's equation and Aiba's equation. The maximum concentration of sugar Sm, which was the highest concentration of sugar not having any effect on the growth inhibition, was 150 g/L and the substrate inhibition was expressed as a function of (S-Sm). The maximum specific growth inhibition, was 150 g/L and the substrate inhibition was expressed as a function of (S-Sm). The maximum specific growth rate ${\mu}m$, Monod's constant Ks, and Andrew's inhibition constant KI were 0.49 hr-1, 19 g/L, and 139 g/L, respectively. The maximum ethanol concentration, Pm, which did not show any inhibition effect on the specific growth rate was found to be 2 g/L. Therefore, the ethanol inhibition was represented as a function of (P-Pm). The final mathematical model for the specific growth rate of the microorganism in this work is proposed as the following. And the average percent of errors between the calculated specific growth rate and the experimental values was 5.96%.

  • PDF

Change-Point Estimation and Bootstrap Confidence Regions in Weibull Distribution

  • Jeong, Kwang-Mo
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.3
    • /
    • pp.359-370
    • /
    • 1999
  • We considered a change-point hazard rate model generalizing constant hazard rate model. This type of model is very popular in the sense that the Weibull and exponential distributions formulating survival time data are the special cases of it. Maximum likelihood estimation and the asymptotic properties such as the consistency and its limiting distribution of the change-point estimator were discussed. A parametric bootstrap method for finding confidence intervals of the unknown change-point was also suggested and the proposed method is explained through a practical example.

  • PDF

Optimal Reservoir Operation Models for Paddy Rice Irrigation with Weather Forecasts (II) -Model Development- (기상예보를 고려한 관개용 저수지의 최적 조작 모형(II) -모형의 구성-)

  • 김병진;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.44-55
    • /
    • 1994
  • This paper describes the development of real-time irrigation reservoir operation models that adequately allocate available water resources for paddy rice irrigation. Water requirement deficiency index(WRDI) was proposed as a guide to evaluate the operational performance of release schemes by comparing accumulated differences between daily release requirements for irrigated areas and actual release amounts. Seven reservoir release rules were developed, which are constant release rate method (CRR), mean storage curve method(MSC), frequency analysis method of reservoir storage rate(FAS), storage requirement curve method(SRC), constant optimal storage rate method (COS), ten-day optimal storage rate method(TOS), and release optimization method(ROM). Long-term forecasting reservoir operation model(LFROM) was formulated to find an optimal release scheme which minimizes WRDIs with long-term weather generation. Rainfall sequences, rainfall amount, and evaporation amount throughout the growing season were to be forecasted and the results used as an input for the model. And short-term forecasting reservoir operation model(SFROM) was developed to find an optimal release scheme which minimizes WRDIs with short-term weather forecasts. The model uses rainfall sequences forecasted by the weather service, and uses rainfall and evaporation amounts generated according to rainfall sequences.

  • PDF

A Model for Diffusion and Dissolution Controlled Drug Release from Dispersed Polymeric Matrix (고분자 분산 매트릭스로부터의 약물방출에 관한 확산 및 용출 제어 모델)

  • Byun, Young-Rho;Choi, Young-Kweon;Jeong, Seo-Young;Kim, Young-Ha
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.2
    • /
    • pp.79-88
    • /
    • 1990
  • A numerical model for diffusion and dissolution controlled transport from dispersed matrix is presented. The rate controlling process for transport is considered to be diffusion of drug through a concentration gradient coupled with time-dependent surface change and/or disappearance of the dispersed drug in response to the dissolution. The transport behavior of drug was explained in terms of ${\nu}$ parameter: ${\nu}$ value means a ratio of diffusion time constant and dissolution time constant. This general model has wide range of application from where release is controlled by the diffusion rate to where release is governed by the dissolution rate. Based on this model, theoretical drug concentration, particle size distributions in the polymer matrix system and the resulting release rate were also investigated.

  • PDF

Estimation of NO$_2$ Source Generation and Ventilation rate in Residence by Multiple Measurements

  • Won Ho, Yang;Gi Yeong, Lee
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.155-160
    • /
    • 2003
  • Indoor air quality can be affected by indoor sources, ventilation, decay and outdoor levels. Although technologies exist to measure these factors, direct measurements are often difficult. The purpose of this study was to develop an alternative method to characterize indoor environmental factors by multiple indoor and outdoor measurements. Daily indoor and outdoor $NO_2$ concentrations were measured for 30 consecutive days in 28 houses in Brisbane, Australia, and for 21 consecutive days in 37 houses in Seoul, Korea. Using a mass balance model and regression analysis, penetration factor (ventilation rate divided by the sum of ventilation rate and deposition constant) and source strength factor (source strength divided by the sum of ventilation rate and deposition constant) were calculated using multiple indoor and outdoor measurements. Subsequently, the ventilation rate and $NO_2$ source strength were estimated. Geometric means of ventilation rate were 1.44 ACH in Brisbane, assuming a residential $NO_2$ deposition constant of 1.05 $hr^{-1}$, and 1.36 ACH in Seoul, with the measured residential $NO_2$ deposition constant of 0.94 $hr^{-1}$. Source strengths of $NO_2$ were 15.8 $\pm$ 18.2 ${\mu}g$/$m^3$.hr and 44.7 $\pm$ 38.1${\mu}g$/$m^3$.hr in Brisbane and Seoul, respectively. In conclusion, indoor environmental factors were effectively characterized by this method using multiple indoor and outdoor measurements.

  • PDF

Estimation of Nitrogen Dioxide Source Generation and Ventilation Rate in Residence Using Multiple Measurements in Korea

  • Chung, Moon-Ho;Yang, Won-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.12a
    • /
    • pp.45-50
    • /
    • 2004
  • Indoor air quality can be affected by indoor sources, ventilation, decay and outdoor levels. Alt hough technologies exist to measure these factors, direct measurements are often difficult. The purpose of this study was to develop an alternative method to characterize indoor environmental factors by multiple indoor and outdoor measurements. Daily indoor and outdoor NO2 concentrations were measured for 30 consecutive days in 28 houses in Brisbane, Australia, and for 21 consecutive days in 37 houses in Seoul, Korea. Using a mass balance model and regression analysis, penetration factor (ventilation rate divided by the sum of ventilation rate and deposition constant) and source strength factor (source strength divided by the sum of ventilation rate and deposition constant) were calculated using multiple indoor and outdoor measurements. Subsequently, the ventilation rate and NO2 source strength were estimated. Geometric means of ventilation rate were 1.44 ACH in Brisbane, assuming a residential NO2 deposition constant of 1.05 hr-1, and 1.36 ACH in Seoul, with the measured residential NO2 deposition constant of 0.94 hr-1. Source strengths of N02 were 15.8 ${\pm}$ 18.2 ${\mu}$g/m3${\cdot}$hr and 44.7 ${\pm}$ 38.1 ${\mu}$g/m3${\cdot}$hr in Brisbane and Seoul, respectively. In conclusion, indoor environmental factors were effectively characterized by this method using multiple indoor and outdoor measurements.

  • PDF

Drying Characteristics of Plating Sludge by Microwave (마이크로파 가열에 의한 도금슬러지 건조특성)

  • 문경환;손종렬;김덕찬
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.9-15
    • /
    • 1998
  • Microwave heating and drying processes have been well established in various industrial applications. Feasibilities of successful application of microwave drying to many material have been shown on the laboratory or pilot-plant scale. The microwave drying behavior of plating sludge are considered in this paper. The plating sludge containing 70%, 80% and 90% water exposed to microwave power at 2,450 MHz, 700W. An experimental microwave drying apparatus was designed and constructed to monitor weight loss during drying. By studying the drying characteristic curve, the moisture in sludge was almost classified into two categories : free moisture and intestinal moisture. And the critical moisture contents at which the drying rate ceases to be constant were from 10.1 to 10.5%. A simple drying model is proposed which may be used to describe drying behavior of plating sludge. The constant rate and the falling rate periods in microwave drying were addressed separately. From the eqation of constant rate period the drying rate constants decreased exponentially with increasing depth. Microwave heating compared with conventional heating offered higher heating rates from 9 to 16 times. Therefore, microwave drying process can be effective in removing moisture from plating sludge.

  • PDF

Kinetics of Methyl Green Fading in the Presence of TX-100, DTAB and SDS

  • Samiey, Babak;Dalvand, Zeinab
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1145-1152
    • /
    • 2013
  • The rate constant of alkaline fading of methyl green ($ME^{2+}$) was measured in the presence of non ionic (TX-100), cationic (DTAB) and anionic (SDS) surfactants. $ME^{2+}$ hydrolyses and fades in neutral water and in this work we search the effects of surfactants on its fading rate. The rate of reaction showed remarkable dependence on the electrical charge of the used surfactants. It was observed that the reaction rate constant decreased in the presence of DTAB and SDS and increased in the presence of TX-100. Binding constants of $ME^{2+}$ to TX-100, DTAB and SDS and the related thermodynamic parameters were obtained by classical (or stoichiometric) model. The results show that binding of $ME^{2+}$ to TX-100 and DTAB are two-region and that of SDS is three-region. Also, the binding constants of $ME^{2+}$ to surfactant molecules in DTAB/TX-100 and SDS/TX-100 mixed solutions and their stoichiometric ratios were obtained.

A Study of the Propagation of Turbulent Premixed Flame Using the Flame Surface Density Model in a Constant Volume Combustion Chamber

  • Lee, Sangsu;Kyungwon Yun;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.564-571
    • /
    • 2002
  • Three-dimensional numerical analysis of the turbulent premixed flame propagation in a constant volume combustion chamber is performed using the KIVA-3V code (Amsden et. al. 1997) by the flame surface density (FSD) model. A simple near-wall boundary condition is eaployed to describe the interaction between turbulent premixed flame and the wall. A mean stretch factor is introduced to include the stretch and curvature effects of turbulence. The results from the FSD model are compared with the experimental results of schlieren photos and pressure measurements. It is found that the burned mass rate and flame propagation by the FSD model are in reasonable agreement with the experimental results. The FSD combustion model proved to be effective for description of turbulent premixed flames.

Estimation of Mean Air Exchange Rate and Generation Rate of Nitrogen Dioxide Using Box Model in Residence (주택에서 Box Model을 이용한 평균 환기율 및 이산화질소 발생량 추정)

  • Bae, Hyeon Ju;Yang, Won Ho;Son, Bu Sun;Kim, Dae Won
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.645-653
    • /
    • 2004
  • Indoor air quality is affected by source strength of pollutants, ventilation rate, decay rate, outdoor level, and so on. Although technologies measuring these factors exist directly, direct measurements of all factors are not always practical in most field studies. The purpose of this study was to develop an alternative method to estimate these factors by application of multiple measurements. For the total duration of 30 days, daily indoor and outdoor $NO_2$ concentrations were measured in 30 houses in Brisbane, Australia, and for 21 days in 40 houses in Seoul, Korea, respectively. Using a box model by mass balance and linear regression analysis, penetration factor (ventilation divided by sum of air exchange rate and deposition constant) and source strength factor (emission rate divided by sum of air exchange rate and deposition constant) were calculated, Sub-sequently, the ventilation and source strength were estimated. In Brisbane, the penetration factors were $0.59\pm0.14$ and they were unaffected by the presence of a gas range. During sampling period, geometric mean of natural ventilation was estimated to be $l.l0\pm1.5l$ ACH, assuming a residential $NO_2$ decay rate of 0.8 hr^{-1}$ in Brisbane. In Seoul, natural ventilation was $1.15\pm1.73$ ACH with residential $NO_2$ decay rate of 0.94 hr^{-1}$ Source strength of $NO_2$ in the houses with gas range $(12.7\pm9.8$ ppb/hr) were significantly higher than those in houses with an electric range $(2.8\pm2,6$ ppb/hr) in Brisbane. In Seoul, source strength in the houses with gas range were $l6.8\pm8.2$ ppb/hr. Conclusively, indoor air quality using box model by mass balance was effectively characterized.