Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.4.1145

Kinetics of Methyl Green Fading in the Presence of TX-100, DTAB and SDS  

Samiey, Babak (Department of Chemistry, Faculty of Science, Lorestan University)
Dalvand, Zeinab (Department of Chemistry, Faculty of Science, Lorestan University)
Publication Information
Abstract
The rate constant of alkaline fading of methyl green ($ME^{2+}$) was measured in the presence of non ionic (TX-100), cationic (DTAB) and anionic (SDS) surfactants. $ME^{2+}$ hydrolyses and fades in neutral water and in this work we search the effects of surfactants on its fading rate. The rate of reaction showed remarkable dependence on the electrical charge of the used surfactants. It was observed that the reaction rate constant decreased in the presence of DTAB and SDS and increased in the presence of TX-100. Binding constants of $ME^{2+}$ to TX-100, DTAB and SDS and the related thermodynamic parameters were obtained by classical (or stoichiometric) model. The results show that binding of $ME^{2+}$ to TX-100 and DTAB are two-region and that of SDS is three-region. Also, the binding constants of $ME^{2+}$ to surfactant molecules in DTAB/TX-100 and SDS/TX-100 mixed solutions and their stoichiometric ratios were obtained.
Keywords
Methyl green; Stoichiometric model; Fading; Surfactant;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Mahta, M.; Sundari, L. B. T.; Raiana, K. C. Int. J. Chem. Kinet. 1996, 28, 637.
2 Feng, J.; Zeng, Y.; Ma, C.; Cai, X.; Zhang, Q.; Tong, M.; Yu, B.; Xu, P. Appl. Environ. Microbiol. 2006, 72, 7390.   DOI   ScienceOn
3 Engberts, J. B. F. N. Pure & Appl. Chem. 1992, 64, 1653.   DOI
4 Cui, L.; Liu, Z.; Hui, F.; Si, C. BioRes. 2011, 6, 3850.
5 Chaudhuri, R. G.; Paria, S. J. Colloid Interface Sci. 2011, 354,563.   DOI   ScienceOn
6 Kostenbauder, H. B.; Jawad, M. J.; Po-lai Sung, M. S.; Digenis, B. S.; Digenis, G. A. J. Soc. Cosmet. Chem. 1971, 22, 83.
7 Nowothnick, H.; Blum, J.; Schomacker, R. Angew. Chem. Int. Ed. 2011, 50, 1918.   DOI   ScienceOn
8 Duxbury, D. F. Chem. Rev. 1993, 93, 381.   DOI
9 Kurnick, N. B.; Mirsky, A. E. J. Gen. Physiol. 1950, 33, 265.   DOI   ScienceOn
10 Geethakrishnan, T.; Palanisamy, P. K. American Journal of Applied Sciences 2005, 2, 1228.   DOI
11 Amis, E.; Overman R. T. J. Am. Chem. Soc. 1944, 66, 941.   DOI
12 Samiey, B.; Alizadeh, K.; Moghaddasi, M. A.; Mousavi, M. F.; Alizadeh, N. Bul. Korean Chem. Soc. 2004, 25, 726.   DOI   ScienceOn
13 Samiey, B.; Ashoori, F. Acta Chim. Slov. 2011, 58, 223.
14 Samiey, B.; Rafi Dargahi, M. Reac. Kinet. Mech. Cat. 2010, 101,25.   DOI
15 Huang, Z.; Gu, T. Colloids and Surfaces 1987, 28, 159.   DOI   ScienceOn
16 Parida, S. K.; Mishra, B. K. Colloids Surf. A 1998, 134, 249.   DOI   ScienceOn
17 Ingold, C. K. Structure and Mechanism in Organic Chemistry; Bell, London, 1993.
18 Hughes, E. D. Trans. Faraday Soc. 1941, 37, 603.   DOI
19 Chotipong, A.; Scamehorn, J. F.; Rirksomboon, T.; Chavadej, S.;Supaphol, P. Colloids Surf. A 2007, 297, 163.   DOI   ScienceOn
20 Rabiller-Baudry, M.; Paugam, L.; Bégion, L.; Delaunay, D.; Fernandez-Cruz, M.; Phina-Ziebin, C.; Laviades-Garcia de Guadiana, C.; Chaufer, B. Desalination 2006, 191, 334.   DOI   ScienceOn
21 Mandeep, M. S.; Shweta, S.; Singh, K.; Shaheen, A. J. Colloid Interface Sci. 2005, 286, 369.   DOI   ScienceOn
22 Soboleva, O. A.; Badun, G. A.; Summ, B. D. Colloid Journal 2006, 68, 228.   DOI
23 Carnero Ruiz, C.; Aguiar, J. Langmuir 2000, 16, 7946.   DOI   ScienceOn
24 Cirin, D. M.; Posa, M. M.; Krstonoši , V. S.; Milanovi , M. L. Hem. Ind. 2012, 66, 21.   DOI
25 Piszkiewicz, D. J. J. Am. Chem. Soc. 1976, 98, 3053.   DOI
26 Piszkiewicz, D. J. J. Am. Chem. Soc. 1977, 99, 7695.   DOI
27 Piszkiewicz, D. J. J. Am. Chem. Soc. 1977, 99, 1550.   DOI