• Title/Summary/Keyword: Constant load

Search Result 1,735, Processing Time 0.024 seconds

Evaluation on Deformation Capacity of CFT Square Columns subject to Constant Axial and Cyclic Lateral Loads (일정축력과 반복 수평력을 받는 콘크리트충전 각형강관 기둥의 변형성능 평가)

  • Ji, Ku Hyun;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.209-219
    • /
    • 2000
  • Concrete Filled steel Tube(CFT) Column has an excellent structural capacities in accordance with an interaction effect between the steel tube and concrete. Recently, CFT structure has been focussed on a structural system for a high-rise buildings. The purpose of this study is to evaluate a strength and deformation capacity of CFT square columns subjected to constant axial and cyclic lateral load. The test parameters are diameters to thickness ratio of steel tube, axial load ratios, concrete strengths, load applying types and whether or not filled concrete. Total sixteen specimens are fabricated to clarify the energy absorbtion capacity of CFT columns. Experimental results are summarized for maximum strength, initial stiffness and deformation capacity.

  • PDF

Analysis of Estimated Position Error by Magnetic Saturation and Compensating Method for Sensorless Control of PMSM (자속 포화에 의한 PMSM 센서리스 위치 추정 오차 분석 및 보상 기법)

  • Park, Byung-Jun;Gu, Bon-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.3
    • /
    • pp.430-438
    • /
    • 2019
  • For a pump or a compressor motor, a high periodic load torque variation is induced by the mechanical works, and it causes system vibration and noise. To minimize these problems, load torque compensation method, injecting periodic torque current, could be utilized. However, with the sensorless control method, which is usually utilized in the pump and compressor for low cost, the periodic torque current degrades the accuracy of the rotor position estimation owing to the inductance variation. This paper analyzes the rotor position and speed estimation error of sensorless control method with constant motor parameters under period loading. Assuming the constant speed by the accurate load torque compensation, the speed error equation is derived in frequency domain with inductance depending on the stator current. Further, it is also shown that the rotor position error could be minimized by compensating the inductance variation. The simulation and experimental results verify that the derived speed error model and the validity of the inductance compensation method.

An Evaluation for the Fire Resistance of Concrete-Filled Steel Square Tube Columns under Constant Axial Loads (일정 축력을 받는 콘크리트충전 각형 강관기둥의 내화성능 평가)

  • Park, Su Hee;Ryoo, Jae Yong;Chung, Kyung Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.703-714
    • /
    • 2007
  • The aim of this research is to evaluate the fire resistance of concrete-filled steel square tube columns (square CFT columns) under constant axial loads by numerical analysis. The authors examined the experimental results on the fire resistance of concrete-filled steel square tube columns without fire protection. As the materials of CFT columns, steel of SPSR 400 grade and concrete of 27.5MPa and 37.8MPa strengths were used. The significant parameters were determined, such as load ratio, cross-sectional dimensions, and concrete strength. Detailed analytical simulations of fire resistance and axial deformation showed good agreement with the experimental observations. Therefore, this numerical analysis exhibited a reasonable estimation of fire resistance of the square CFT column. Results of the numerical parametric studies showed that the fire resistance of the CFT columns increased with the decrease of the concrete strength and the increase of the cross-sectional dimensions about the constant axial load ratio ($N/N_c$).

Finite Element Analysis for Fastening Process of Snap Ring (스냅링 체결 공정 해석)

  • Ryu, Il-Hun;Lim, Young-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.187-192
    • /
    • 2009
  • A snap ring is a kind of metal spring with open ends which can be installed into a groove to prevent lateral movement. In this study a nonlinear finite element analysis model is developed to simulate the fastening process of a snap ring connecting the constant velocity joint and the transmission. Insert load, disengage load and breakage are three important issues. They are analyzed using the developed model. The load histories of simulations are similar to those of tests and the differences of maximum load are around 10%. Bending of the entire ring and unfolding of the end section are major contributors of the fastening load. The load variations caused by the angular position of spline tooth are about 50%. Breakage is highly sensitive to the position of a snap ring.

Research on the Improvement of Convergence Characteristics of the Fast Decoupled Load Flow (고속분할법의 수렴특성 개선에 관한 연구)

  • Lee, In-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.403-408
    • /
    • 2012
  • In this paper, we propose useful load flow algorithms called FEDL (fast enhanced decoupled load flow). The proposed load flow method can improve the convergence characteristics particularly when the P-Q coupling becomes significant and the power system operating states deviate from the conditions required for stable convergence of the FDL by reflecting in part the effects of the off-diagonal terms in the Jacobian. In our test with IEEE AEP-30 bus system and RTS-96 73-bus system, it converge even when the fast decoupled load flow (FDL) and its variations keeping load flow matrices constant experience convergence problems. Test results show promising performances of the proposed algorithms in their convergence characteristics both in number of iterations and overall convergence speeds.

Load distribution analysis of a sprocket wheel tooth for a low head hydro-turbine power transmission system (저낙차용 수차의 동력전달 스프로켓 휠 이의 하중분포 해석)

  • 강용석;김현수;김현진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1087-1095
    • /
    • 1994
  • Chain drive power transmission system was developed for a low head hydro-turbine which generates power by energy transformation on the turbine blades attached to chains. Also, experimental and theoretical analysis for the sprocket wheel tooth load distribution were performed. The tooth load was measured by the specially designed load sensor. It was found that the tooth load distribution for the steady state operation was in good accordance with the quasi-static state results showing the peak load at the final meshing tooth. The trend of the experimental results agreed with the theoretical results based on the spring model analysis and difference in the magnitude of the maximum tooth load was considered to be the effect of the variable spring constant due to the moving contact point between the roller and sprocket wheel tooth.

Analysis of the Axle Load of a Rice Transplanter According to Gear Selection

  • Siddique, Md Abu Ayub;Kim, Wan Soo;Baek, Seung Yun;Kim, Yong Joo;Park, Seong Un;Choi, Chang Hyun;Choi, Young Soo
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.125-132
    • /
    • 2020
  • The objective of this study was to analyze the axle load of a rice transplanter when planting rice seedlings at different working load conditions to select a suitable gear stage and a constant planting depth for rice seedlings. In this study, there are four levels of planting distances (26, 35, 43, and 80 cm) and three planting depths (low, medium, and high) with two gear stages (1.3 and 1.7 m/s). Axle loads and required planting pressures were analyzed statistically. It was observed that axle torques were increased with increasing planting depths for both gear stages, meaning that axle torques were directly proportional to planting depths for both gear stages. It was also observed that required planting pressures had a significant difference between planting distances. Planting pressures also showed significant difference according to gear stage and planting depth. These results indicate that planting pressures were directly proportional to both gear stage and planting depth. Results revealed that the automatic depth control system of a rice transplanter could not guarantee a constant planting depth as supplied pressures were variable. This indicates that a control algorithm is needed to ensure a constant planting depth. In the future, a control algorithm will be developed for an automatic depth control system of a rice transplanter to improve its comprehensive performance and efficiency.

Secondary Indirect Constant Voltage Control Technique for Hybrid Solid State Transformer using Primary Side Information (하이브리드 반도체 변압기의 1차측 정보를 이용한 2차측 간접 정전압 제어 기법)

  • Lee, Taeyeong;Yun, Chun-Gi;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.420-423
    • /
    • 2020
  • This study proposes an indirect constant voltage control algorithm for hybrid solid-state transformers (HSSTs) by using primary side information. Considering the structure of HSSTs, measuring voltage and current information on the primary side of a transformer is necessary to control the converter and inverter of the power converter. The secondary side output voltage is measured to apply the conventional secondary side constant voltage control algorithm, and thus, the digital control board requires the same rated insulation voltage as that of the transformer. To solve this problem, the secondary voltage of the transformer obtained from the tap voltage is used. Moreover, output voltage decreases as load increases because the proposed indirect constant voltage control scheme does not consider the cable impedance between the secondary output terminal and the load. This study also proposes a technique for compensating the secondary output voltage by using the primary current of the transformer and the resistance value of the cable. An experiment is conducted using a scale-down HSST prototype consisting of a 660 V/220 V tap transformer. The problem of the proposed indirect constant voltage control strategy and the improvement effect due to the application of the compensation method are compared using the derived experimental results.

Fluid Queueing Model with Fractional Brownian Input

  • Lee, Jiyeon
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.649-663
    • /
    • 2002
  • We consider an unlimited fluid queueing model which has Fractional Brownian motion(FBM) as an input and a single server of constant service rate. By using the result of Duffield and O'Connell(6), we investigate the asymptotic tail-distribution of the stationary work-load. When there are multiple homogeneous FBM inputs, the workload distribution is similar to that of the queue with one FBM input; whereas for the heterogeneous sources the asymptotic work-load distributions is dominated by the source with the largest Hurst parameter.

A Study on Pulse Frequency Modulated Chopper with Feedback (Feedback을 가진 P.V.M.방식 Chopper 회로에 관한 연구)

  • 박민호;전희종
    • 전기의세계
    • /
    • v.26 no.3
    • /
    • pp.63-68
    • /
    • 1977
  • In this paper, the theory of pulse frequency modulated DC/DC power converter to obtain constant output voltage for all input voltage changes is discussed. The switch controller consisting of integrator and comparator determines the ON time of power switch-Thyristor-by the error between the load voltage and a load reference voltage. Resulting voltage and current waveforms have been studied theoretically in detail and verified experimentally for a resistive and inductive load condition. State equations for voltages and currents using binary logic variables are computed by digital computer. Comparison of these withe oscillograms obtained from an experimental model shows very close agreement.

  • PDF