• Title/Summary/Keyword: Constant current source

Search Result 252, Processing Time 0.025 seconds

Design and Implementation of Digital Electrical Impedance Tomography System (디지털 임피던스 영상 시스템의 설계 및 구현)

  • 오동인;백상민;이재상;우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.269-275
    • /
    • 2004
  • Different biological tissues have different values of electrical resistivity. In EIT (electrical impedance tomography), we try to provide cross-sectional images of a resistivity distribution inside an electrically conducting subject such as the human body mainly for functional imaging. However, it is well known that the image reconstruction problem in EIT is ill-posed and the quality of a reconstructed image highly depends on the measurement error. This requires us to develop a high-performance EIT system. In this paper, we describe the development of a 16-channel digital EIT system including a single constant current source, 16 voltmeters, main controller, and PC. The system was designed and implemented using the FPGA-based digital technology. The current source injects 50KHz sinusoidal current with the THD (total harmonic distortion) of 0.0029% and amplitude stability of 0.022%. The single current source and switching circuit reduce the measurement error associated with imperfect matching of multiple current sources at the expense of a reduced data acquisition time. The digital voltmeter measuring the induced boundary voltage consists of a differential amplifier, ADC, and FPGA (field programmable gate array). The digital phase-sensitive demodulation technique was implemented in the voltmeter to maximize the SNR (signal-to-noise ratio). Experimental results of 16-channel digital voltmeters showed the SNR of 90dB. We used the developed EIT system to reconstruct resistivity images of a saline phantom containing banana objects. Based on the results, we suggest future improvements for a 64-channel muff-frequency EIT system for three-dimensional dynamic imaging of bio-impedance distributions inside the human body.

Development of an Electric Pulp Tester with Constant Current Source (정 전류원을 이용한 치수 검사기의 개발)

  • 김재성;남기창;김수찬;이승종;김덕원
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.2
    • /
    • pp.61-68
    • /
    • 2004
  • Electric stimulation of teeth has been used for assessing pulp vitality. The principle is based upon the assumption that a subject feels the pain produced by electrical current stimulation of intradental nerve. Because of very high and wide range of impedance of the enamel, it is very difficult to determine stimulation levels regardless of teeth status. Most pulp testers adopt voltage stimulation method and thus, their stimulating threshold levels significantly depend on each individual. Therefore, a constant current stimulator is necessary to minimize the effect of wide variation due to different enamel thickness. And it is also necessary to test teeth vitality with a wide current range regardless of tooth impedance. In this study, we constructed a burst-wave type pulp tester to reduce the pain using a current stabilizing circuit with the maximum current of 150 uA.

LED Driver by the Low Cost DSP (저가형 DSP를 이용한 LED 구동회로)

  • Song, Jae-Wook;Yoo, Jin-Wan;Park, Chong-Yeun
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.103-107
    • /
    • 2012
  • Due to improvement of the semiconductor technology, the LED replaces the conventional lighting source and LED drivers have been studied and developed. The LED is driven by the constant current control method according to its characteristics. For the constant current control method, the linear regulator and the switching regulator is used. The switching regulator is usually used to LED drivers because it has specific characteristics as the wide input dynamic range and the high efficiency. In this paper, we have described the principle and the implement of the switching regulator, using the drive IC and the low cost DSP chip. Also, both methods have been implemented and its electrical characteristics had almost same experimental results in the steady state and the transient state.

  • PDF

A Solid State Controller for Self-Excited Induction Generator for Voltage Regulation, Harmonic Compensation and Load Balancing

  • Singh Bhim;Murthy S. S.;Gupta Sushma
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.109-119
    • /
    • 2005
  • This paper deals with the performance analysis of static compensator (STATCOM) based voltage regulator for self­excited induction generators (SEIGs) supplying balanced/unbalanced and linear/ non-linear loads. In practice, most of the loads are linear. But the presence of non-linear loads in some applications injects harmonics into the generating system. Because an SEIG is a weak isolated system, these harmonics have a great effect on its performance. Additionally, SEIG's offer poor voltage regulation and require an adjustable reactive power source to maintain a constant terminal voltage under a varying load. A three-phase insulated gate bipolar transistor (IGBT) based current controlled voltage source inverter (CC- VSI) known as STATCOM is used for harmonic elimination. It also provides the required reactive power an SEIG needs to maintain a constant terminal voltage under varying loads. A dynamic model of an SEIG-STATCOM system with the ability to simulate varying loads has been developed using a stationary d-q axes reference frame. This enables us to predict the behavior of the system under transient conditions. The simulated results show that by using a STATCOM based voltage regulator the SEIG terminal voltage can be maintained constant and free from harmonics under linear/non linear and balanced/unbalanced loads.

Voltage Control of a Synchronous Generator for Ship using a Compound Type Digital AVR (혼합형 디지털 자동 전압 조정 장치를 이용한 선박용 동기발전기의 출력전압제어)

  • Park, Sang-Hoon;Lee, Sang-Seuk;Yu, Jae-Sung;Lee, Su-Won;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.397-403
    • /
    • 2009
  • In this paper, an exciter current control of a synchronous generator for ships using a compound type digital automatic voltage regulator (DVAR) in order to provide a constant output voltage of the generator is presented. The compound type DAVR is composed of a controller part to adjust output voltage and an power source unit to supply power to the exciter. The controller part, which generates the PWM switching pattern via the PI controller, drives a power MOSFET for bypass to limit the SG's exciter current. The power source unit part is parallel connected to an output terminal of the generator through a reactor and a power CT. The residual magnetic flux of SG provides exciter current to the exciter through the reactor during the initial running or no load state and load current supplies field current to the exciter through the power CT during loading state. This paper confirmed an experiment to verify the validity of compound type DAVR system for controlling output voltage of synchronous generator.

Three-Phase Z-Source Hybrid Active Power Filter System (3상 Z-소스 하이브리드 능동전력필터 시스템)

  • Lim, Young-Cheol;Kim, Jae-Hyun;Jung, Young-Gook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.75-85
    • /
    • 2010
  • In this paper, a Z-source hybrid active power filter is proposed to compensate the harmonics and reactive power in power distribution system. The proposed system is composed of a 7th harmonics-tuned passive filter and an active power filter with a Z-source inverter topology, while voltage source PWM inverter or current source PWM inverter are applied as the power converter topology of conventional active power filters. The Z-source impedance network along with shoot through capability would ensure a constant DC voltage across the DC link. A polymer electrolyte membrane fuel cell is employed as an compensation DC energy source of the proposed system and its equivalent R-L-C circuit is modeled for simulation. As the compensation and control algorithm of the proposed system, the current synchronous detection algorithm is applied. The simulation analysis by PSIM is performed under the three-phase 220V/60Hz voltage source and 25A nonlinear diode loads. The effectiveness of the proposed the system is verified in the steady and transient states.

A Study on the Interrupting Capability of the Fault Current in the E.H.V. Transmission System. (SF6 가스절연 개페장치 일)

  • 강길건
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.1
    • /
    • pp.18-23
    • /
    • 1991
  • Recently SLAMECKA suggested the mathematical dynamic arc model of the SF6 gas circuit breaker [1]. The author applied the above dynamic arc model to the E.H.V. transmission line and investigated the interrupting capability of the SF6 gas circuit breaker. In particular the Runge-Kutta-England numerical method suitable for the use in systems that involve nonlinear dynamic arc and traveling wave was used by converting the current source into the voltage source in the DOMMEL's method [2]. The successful computer resultls were obtained and it was found that the arc time constant and the second derivative of the arc conductance are closely related to the interrupting capability of the SF6 gas circuit breaker.

  • PDF

A Study on the Characteristic of Variable High Voltage Power Source for Laser Printer (Laser 프린터용 고압 가변 전원특성에 관한 연구)

  • Chae Y.m;Cho J.h.;Kwon J.g.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.110-114
    • /
    • 2003
  • In this paper, a new self-oscillated type high voltage charger controller circuit is proposed, which has variable constant current source characteristics to improve charge characteristic of charger roller. The proposed control method enables high quality printing characteristics regardless of the circumstance change such as ambient temperature or humidity by changing the current reference signal. To verify the proposed control method various experiments are performed.

  • PDF

The Characteristics of New Current Source GTO Inverter with Double Recovery Path of Commutation Energy (전류(轉流)에너지 2중 궤환방식 새로운 전류형 GTO 인버터의 특성)

  • Choi, Sang-Won;Kim, Jin-Pyo;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.435-437
    • /
    • 1997
  • In order to develop the three phase GTO CSI with double recovery path of commutation energy by passive devices (LCD), we studied the clamping circuit to protect switching device and energy recovery circuit to recover absorbed energy of capacitor and DC link inductor. In this paper, we investigated how DC input power is increased or decreased according to energy recovery path with or not in the three phase GTO current source inverter. We used a induction motor as the load of inverter, and controlled a induction motor with V/F constant control. Experimental results show that dissipated DC power is decreased and capacitor voltage Vc is effectively suppressed by double recovery path.

  • PDF

A Method for Real Time Monitoring of Oxide Thickness in Plasma Electrolytic Oxidation of Titanium

  • Yoo, Kwon-Jong;Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.8-11
    • /
    • 2010
  • During PEO (plasma-electrolytic-oxidation) treatment of titanium, the relationship between the thickness of oxide film and the measured electrical information was investigated. A simple real time monitoring method based on the electrical information being gathered during PEO treatment is proposed. The proposed method utilizes the current flowing from a high frequency voltage source to calculate the resistance of an oxide film, which is converted into the thickness of an oxide film. This monitoring method can be implemented in PEO system in which an oxide film is grown by constant or pulsed voltage/current sources.