• Title/Summary/Keyword: Constant Temperature

Search Result 5,120, Processing Time 0.046 seconds

New Start-Up Logic for Microturbine by Constant Power Control under an Extremely Low Temperature (극저온 환경에서의 정 출력 제어를 적용한 마이크로터빈의 새로운 시동 로직 개발)

  • Rho, Min-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1249-1255
    • /
    • 2006
  • This paper presents a constant power control logic for perfect starting a microtubine in vehicle. Under extremely low temperature, performance of the start-up system is severely dropped than that of room temperature because of increasing of load of mechanical parts including engine core and drop of the lead-acid battery capacity. Unfortunately, performance drop of lead-acid battery makes severe problems that cause a malfunction of fuel and lubrication system and power fail of digital devices. So we propose the new start-up logic by constant output power control of lead-acid battery using PWM inverter controller for preventing above problems and keeping good performance of start-up system for microturbine. Also, we prove usefulness of new start-up logic through experimental results under $-32^{\circ}C$ ambient temperature.

Development of Experimental Device for Analysis of Hydraulic Oil Characteristics with Dielectric Constant Sensors (유전상수 센서를 이용한 유압 작동유의 분석을 위한 실험장비 개발)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.41-47
    • /
    • 2021
  • An experimental device was developed for analysis of hydraulic oil characteristics with dielectric constant sensors. Online analysis is the most effective method of the three methods used for analyzing lubricant oils. This is because it can monitor the machine condition effectively using oil sensors in real time without requiring excellent analysis skill and eliminates human errors. Determining the oil quality usually requires complex laboratory equipment for measuring factors such as density, viscosity, base number, acid number, water content, additive, and wear debris. However, the electric constant is another indicator of oil quality that can be measured on-site. The electric constant is the ratio of the capacitance of a capacitor using that material as a dielectric, compared with a similar capacitor that has a vacuum as its dielectric. The electric constant affects the factors such as the base oil, additive, temperature, electric field frequency, water content, and contaminants. In this study, the tendency of the electric constant is investigated with a variation of temperature, water content, and dust weight. The experimental device can control working temperature and mix the contaminants with oil. A machine condition monitoring program developed to analyze hydraulic oil is described. This program provides graph and digital values with variation of time. Moreover, it includes an alarm system for when the oil condition is bad.

Study on the Heat Flux Using Instantaneous Temperature as Height of Probe in the Combustion Chamber (연손실 순간온도 측저에 있어서 돌출높이에 따른 실험적 연구)

  • 이치우;김지훈;김시범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.395-402
    • /
    • 2001
  • The gasoline engine tends to high performance, fuel economy, small-sized. Therefore, it is necessary to solve the problems on thermal load, abnormal combustion, etc, in the engine, Thine film instantaneous temperature measurement probe was made. And the manufactural method of probe was established. The instantaneous surface temperatures in the constant volume combustion chamber were measured by this probe and the heat flux was obtained by Fourier analysis. The authors measured the wall temperature of combustion chamber and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on height of probe. For achieving this goal, the thin film instantaneous temperature probe was developed for analyzing the instantaneous surface wall temperature and unsteady heat flux on the constant volume combustion chamber.

  • PDF

Effects of Calcining Temperature on Planar Coupling Factor and Resonance Charcteristics of BaTiO3 (하소온도가 BaTiO3 세라믹의 Kp와 공진특성에 미치는 영향)

  • 정수태;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.6
    • /
    • pp.66-70
    • /
    • 1986
  • The calcining temperature ranging from 900$^{\circ}C$ to 1300$^{\circ}C$ affected on the planar coupling factor and resonance characteristics of BaTiO3 ceramics doped with 0.2 wt% MnO2 have been investigated. Dielectric constant planar coupling factor and anti-resonance frequency of the sample increased with the calcining temperature up to 1,200$^{\circ}C$ and decreased above that temperature but the resonance frequency decreased slightly with the increasing calcining temperature. The planar coupling factor and anti-resonance frequency increased with the sintered density and dielectric constant while the resonance frequency was almost constant. The resonance and anti-resonance frequency increased with the sample temperature.

  • PDF

A Study on the Combustion Characteristics according to Evaporation rate of Methanol - Blended Fuel (메탄올 혼합 연료의 기화율 변화에 따른 연소특성에 관한 실험적 연구)

  • Cho, H.M.
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.24-34
    • /
    • 1997
  • This paper describes the investigation of combustion characteristics of gasoline-methanol blend in constant volume combustion chamber. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaporating a blend fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deteriorated by decreasing surrounding temperature of fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deter orated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for methanol blend fuel was influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF

Correlation between Dielectric Constant Change and Oxidation Behavior of Silicon Nitride Ceramics at Elevating Temperature up to 1,000 ℃ (질화규소 세라믹스의 고온(~1,000 ℃) 유전상수 변화와 산화 거동의 상관관계 고찰)

  • Seok-Min, Yong;Seok-Young, Ko;Wook Ki, Jung;Dahye, Shin;Jin-Woo, Park;Jaeho, Choi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.580-585
    • /
    • 2022
  • In this study, the high-temperature dielectric constant of Si3N4 ceramics, a representative non-oxide-based radome material, was evaluated and the cause of the dielectric constant change was analyzed in relation to the oxidation behavior. The dielectric constant of Si3N4 ceramics was 7.79 at room temperature, and it linearly increased as the temperature increased, showing 8.42 at 1,000 ℃. As results of analyzing the microstructure and phase for the Si3N4 ceramics before and after heat-treatment, it was confirmed that oxidation did not occur at all or occurred only on the surface at a very insignificant level below 1,000 ℃. Based on this, it is concluded that the increase in the dielectric constant according to the temperature increase of Si3N4 ceramics is irrelevant to the oxidation behavior and is only due to the activation of charge polarization.

Determination of Reorganization Energy from the Temperature Dependence of Electron Transfer Rate Constant for Hydroquinone-tethered Self-assembled Monolayers (SAMs)

  • Park, Won-choul;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.381-385
    • /
    • 2006
  • The temperature dependence on the electron transfer rate constant $(k_{app})$ for hydroquinone redox center in $H_2Q(CH_2)_n$SH-SAMs (n = 1, 4, 6, 8, 10, and 12) on gold electrode was investigated to obtain reorganization energy $(\lambda)$ using Laviron’s formalism and Arrhenius plot of ln $[k_{app}/T^{1/2}]$ vs. T^{-1} based on the Marcus densityof-states model. All the symmetry factors measured for the SAMs were relatively close to unity and rarely varied to temperature change as expected. The electron tunneling constant $(\beta)$ determined from the dependence of the $k_{app}$ on the distance between the redox center and the electrode surface gives almost the same $\beta$ values which are quite insensitive to temperature change. Good linear relationship of Arrhenius plot for all $H_2Q(CH_2)_n$SH-SAMs on gold electrode was obtained in the temperature range from 273 to 328 K. The slopes n Arrhenius plot deduced that $\lambda$ of hydroquinone moiety is ca. 1.3-1.4 eV irrespectively of alkyl chain length of the electroactive SAM.

A Study of Heat Flux on the Height of an Instantaneous Temperature Probe in a Constant Volume Combustion Chamber (정적 연소기에서 순간온도 프로브의 돌출높이에 따른 열유속에 관한 연구)

  • Lee, C.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.216-223
    • /
    • 2003
  • In the production of internal combustion engines, there have been trends to develop the high performance engines with improved fuel efficiency, lighter weights and smaller sizes. This trends help to answer problems related to thermal load and abnormal combustion, etc. in these engines. In order to investigate these problems, a thin film-type probe and its manufacturing method for instantaneously measuring surface-temperatures have been proposed in this study, Instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and heat flux was obtained by Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe have been measured. To achieve the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

Simulation for Performance Evaluation of Heat Pump Outdoor Unit in the Constant Temperature Chamber (항온챔버에서 히트펌프 실외기의 성능 평가를 위한 시뮬레이션)

  • Jong-Ryeol Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.140-146
    • /
    • 2023
  • A lot of research is being done to develop a high-efficiency heat pump to save energy. Among them, research to reduce or eliminate the phenomenon of frost occurring in the outdoor unit coil are being conducted at the same time. A constant temperature chamber that can be tested under the same conditions as natural conditions was constructed to conduct research that does not cause frost on the outdoor unit of the heat pump regardless of the season. The outdoor unit of the heat pump installed in the constant temperature chamber was simulated under the same natural conditions. As a result, it was confirmed that the mass flow rate of the refrigerant decreased as the outdoor temperature decreased, and the dryness of the refrigerant also increased linearly with the outdoor temperature.

The Accurate design of a Temperature stable Dielectric Stepped-Impedance Resonator (온도 변화에 안정한 유전체 Stepped-Impedance Resonator의 정확한 설계)

  • 임상규;김덕환안철
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.625-628
    • /
    • 1998
  • This paper presents the design method of a temperature stable stepped-impedance resonator using composite material. In this method temperature coefficient of dielectric constant $(\tau\varepsilon)$ and thermal expansion coefficient $(\alpha1)$ of dielectric material were considered. Ba(Zn1/3Nb2/3)O3 and CaZrO3 as composite material having opposite signs of temperature coefficient of dielectric constant were selected. The length of this resonator for the temperature stability of resonance frequency was calculated at 900MHz, 1.4㎓ and 1.9㎓. It was found that the ratio of the length of positive $\tau\varepsilon$ materal to the length of negative $\tau\varepsilon$ material is constant at various resonance frequencies.

  • PDF