• Title/Summary/Keyword: Consolidation properties

Search Result 348, Processing Time 0.027 seconds

Compressibility and hydraulic conductivity of calcium bentonite treated with pH-responsive polymer

  • Choo, Hyunwook;Choi, Youngmin;Kim, Young-Uk;Lee, Woojin;Lee, Changho
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.329-337
    • /
    • 2020
  • Polyacrylamide (PAM) possesses high water absorption capacity and a unique pH-dependent behavior that confer large potential to enhance the engineering performance of clays. In this study, calcium bentonite was treated with a nonionic PAM. Flexible-wall permeability test and the consolidation test were performed at different pH values to evaluate the effects of PAM treatment on the hydraulic and consolidation properties. Test results demonstrate that index properties are affected by the adsorbed PAM on clay surface: a decrease in specific gravity, a decrease in net zeta potential, and an increase in liquid limit are observed due to the PAM treatment. At a given pH, the compressibility of the treated clay is greater than that of the untreated clay. However, the compression indices of untreated and treated clays can be expressed as a single function of the initial void ratio, regardless of pH. Hydraulic conductivity is reduced by PAM treatment about 5 times at both neutral and alkaline pH conditions under similar void ratios, because of the reduction in size of the water flow channel by PAM expansion. However, at acidic pH, the hydraulic conductivity of the treated clay is slightly higher than the untreated clay. This reflects that the treated bentonite with PAM can be beneficially used in barrier system for highly alkaline residues.

Powder Densification Using Equal Channel Angular Pressing (ECAP 공정을 이용한 분말의 치밀화)

  • Yoon Seung-Chae;Seo Min-Hong;Hong Sun-Ig;Kim Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.124-128
    • /
    • 2006
  • In recent years, equal channel angular pressing (ECAP) has been the subject of intensive study due to its capability of producing fully dense samples having a ultrafine grain size. In this paper, the ECAP process was applied to metallic powders in order to achieve both powder consolidation and grain refinement. In the ECAP process for solid and powder metals, knowledge of the internal stress, strain and strain rate distribution is fundamental to the determination of the optimum process conditions for a given material. The properties of the ECAP processed solid and powder materials are strongly dependent on the shear plastic deformation behavior during ECAP, which is controlled mainly by die geometry, material properties, and process conditions. In this study, we investigated the consolidation, plastic deformation and microstructure evolution behaviour of the powder compact during ECAP.

Development of High Strength Mg-Zn-Gd Alloys by Rapid Solidification Processing

  • Kim, Min-Chul;Yamasaki, Michiaki;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1048-1049
    • /
    • 2006
  • Rapidly solidified ribbon-consolidation processing was applied for preparation of high strength bulk Mg-Zn-Gd alloys. Mg alloys have been used in automotive and aerospace industries. Rapid solidification (RS) process is suitable for the development of high strength Mg alloys, because the process realizes grain-refinement, increase in homogeneity, and so on. Recently, several nanocrystalline Mg-Zn-Y alloys with high specific tensile strength and large elongation have been developed by rapidly solidified powder metallurgy (RS P/M) process. Mg-Zn-Y RS P/M alloys are characterized by long period ordered (LPO) structure and sub-micron fine grains. The both additions of rare earth elements and zinc remarkably improved the mechanical properties of RS Mg alloys. Mg-Zn-Gd alloy also forms LPO structure in -Mg matrix coherently, therefore, it is expected that the RS Mg-Zn-Gd alloys have excellent mechanical properties. In this study, we have developed high strength RS Mg-Zn-Gd alloys with LPO structure and nanometer-scale precipitates by RS ribbon-consolidation processing. $Mg_{97}Zn_1Gd_2$ and $Mg_{95.5}Zn_{1.5}Gd_3$ and $Mg_{94}Zn_2Gd_4$ bulk alloys exhibited high tensile yield strength (470 MPa and 525 MPa and 566 MPa) and large elongation (5.5% and 2.8% and 2.4%).

  • PDF

Significance of Ground Water Movements in the Numerical Modelling of Tunnelling (터널해석에 있어 지하수 거동의 중요성)

  • 신종호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.257-264
    • /
    • 2003
  • Tunnelling in water bearing soils influences the ground water regime. It has been indicated in the literature that the existence of ground water above a tunnel influences tunnel stability and the settlement profile. Only limited research, however, has been done on ground water movements around tunnels and their influence on tunnel performance. Time dependent soil behaviour can be caused by the changes of pore water pressure and/or the viscous properties of soil(creep) under the stress change resulting from the advance of the tunnel face. De Moor(1989) demonstrated that the time dependent deformations due to tunnelling are mainly the results of pore pressure dissipation and should be interpreted in terms of effective stress changes. Drainage into tunnels is governed by the permeability of the soil, the length of the drainage path and the hydraulic boundary conditions. The potential effect of lime dependent settlement in a shallow tunnel is likely to occur rapidly due to the short drainage path and possibly high coefficient of consolidation. Existing 2D modelling methods are not applicable to these tunnelling problems, as it is difficult to define empirical parameters. In this paper the time-based 2D modelling method is adopted to account for the three dimensional effect and time dependent behaviour during tunnel construction. The effect of coupling between the unloading procedure and consolidation during excavation is profoundly investigated with the method. It is pointed out that realistic modelling can be achieved by defining a proper permeability at the excavation boundary and prescribing appropriate time for excavation Some guidelines for the numerical modelling of drained and undrained excavation has been suggested using characteristic time factor. It is highlighted that certain range of the factor shows combined effect between the unloading procedure due to excavation and consolidation during construction.

  • PDF

Improvement of soft clay at a site in the Mekong Delta by vacuum preloading

  • Quang, N.D.;Giao, P.H.
    • Geomechanics and Engineering
    • /
    • v.6 no.5
    • /
    • pp.419-436
    • /
    • 2014
  • Soil improvement by preloading with PVD in combination with vacuum is helpful when a considerable load is required to meet the desired rate of settlement in a relative short time. To facilitate the vacuum propagation, vertical drains are usually employed in conjunction. This ground improvement method is more and more applied in the Mekong delta of Vietnam to meet the needs of fast infrastructure development. This paper reports on a pilot test that was carried out to investigate the effect of ground improvement by vacuum and PVD on the rate of consolidation at the site of Saigon International Terminals Vietnam (SITV) in Ba Ria-Vung Tau Province, Viet Nam. Three main aspects of the test will be presented, and namely, instrumentation and field monitoring program, calculation of consolidation settlement and back-analysis of soil properties to see the difference before and after ground improvement.

A Study on the Tensile Strength of Glass Woven Fiber Reinforced PET Composites (직조유리섬유강화 PET수지 복합체의 인장특성에 관한 연구)

  • 김홍건;최창용
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.45-49
    • /
    • 2003
  • Tensile strength of the woven glass fiber reinforced PET (Poly-Ethylene-Terephthalate) matrix composite manufactured by rapid press consolidation technique was investigated and evaluated. During pre-heating, consolidation and solidification stages, the optimal manufacturing conditions for this composite were discussed based on the void content and tensile properties depending on vacuum condition. It is found that the effect of vacuum condition during preheating gives a substantial difference on the strength as well as microstructure. It is also found that the failure micromechanism shows several energy absorption processes enhancing fracture toughness.

Compressibility and Permeability Characteristics of Bentonite-Soil/Sand Mixes (벤토나이트-흙/모래 혼합토의 압축 및 투수 특성 연구)

  • 송창섭;윤병옥;반창현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.123-129
    • /
    • 1998
  • Compressibility and permeability properties are the most important input parameters necessary to assess the suitability of core materials in seepage control system construction. To achieve this objective, an experimental investigation was conducted in the laboratory. For the bentonite-soil/sand mixes, consolidation and permeability tests were carried out in the conventional consolidation cell, 6Omm in diameter and 2Omm in height, was modified to perform a falling head type permeability test. From the results, the normalized relationship with respect to void ratio at liquid-limit state $(e_L)$, and the changes of compressibility and permeability for various bentonite-soil/sand mixes were presented. This approach will be helpful in proportioning mixes and predicting corresponding changes in engineering behavior. And it is possible to proportion a mix to arrive at the required compressibility without affecting the permeability.

  • PDF

Discussion: Prediction and Measurement of Settlement in Soft Ground - Investigation, Analysis, Construction and Monitoring (연약지반에서의 침하량과 실제 - 조사, 해석, 시공 및 계측)

  • Chung, Sung-Gyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.383-395
    • /
    • 2007
  • As a state-of-the-art paper related to consolidation settlement, the 31th Terzaghi lecture was briefly described. Case histories that are compared between predicted and measured settlements in the Nakdong River deltaic plane were introduced to show the true picture of our technology. Structures and other features of clays in this country were needed to understand, which are closely related to sample disturbance and also consolidation properties. In order to improve the settlement-related technology, some problems that we have faced and their alternatives were considered.

  • PDF

Application of chemical consolidants into the conservation of limestone monuments

  • Shin, Gi-Rye;Park, Hyeong-Dong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.540-543
    • /
    • 2003
  • There are many stone monuments which are weathered by natural or artificial factors in Korea. The partly weathering in stone could accelerate the rate of weathering, so it is demanded to keep them from the further weathering. Consolidation is evaluated as one of the efficient treatments which have a good effectiveness in stone monuments. But following the former researches, the effectiveness of consolidation could be different, related to the kinds of stone or consolidants. Therefore, in this study, the change of properties was monitored in the long term for the exact evaluation of the stability of the consolidated stone. It is estimated that the pore structure of consolidated stone was filled by consolidant, according to the measurements of ultrasonic velocity, and the digital image analysis of the sample was shown that the color property of stone surface has varied during the curing.

  • PDF

A study on the relationship between engineering properties and compression index for Nakdong-River estuary clay (낙동강하구 점토의 공학적 특성과 압축지수와의 상관성 연구)

  • Jin, Seung-Hyeon;Lee, Kyu-Hwan;Jung, Dae-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.737-742
    • /
    • 2009
  • This research intends to clarify the engineering characteristics of compression index which plays the most important role in the calculation of consolidation settlement, based on the survey of the clay in the estuary of Nakdong River. In addition, it will analyze the parameters of soil and the correlation between the parameters and the existing relation, especially the correlation with compression index, through which it will propose a proper relation for the parameters of clay in this area. As a result of the study, the relation between the settlement and the compression rate using compression index showed 13% settlement error on the average. It is judged that this number can be used for forecasting the consolidation characteristics and the settlement for brief (preliminary) design when the difference between the execution settlement and the measuring settlement is regarded to be 15%.

  • PDF