• Title/Summary/Keyword: Consolidation characteristic

Search Result 73, Processing Time 0.02 seconds

A Study on Characteristic of Sedimentation-Consolidation Conduct for Dredged Soil through Geo-Centrifuge Test (원심모형실험을 이용한 준설토의 침강압밀 거동 특성)

  • Park, Hyunchul;Kang, Hongsig;Sun, Seokyoun;Park, Jongseo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.59-65
    • /
    • 2017
  • The costal reclamation construction is for making reclaimed land by dredging marine clay with seawater, and then bringing the dredged soil into the reclaimed land. During the process, the dredged soil in the reclaimed land undergoes the sedimentation-consolidation process. Among the processes, the consolidation is a very critical factor when planning reclaimed land because of its requiring time and settlement. In order to predict the requiring time and settlement, the Column test, which was suggested by Yano, has been usually used in the nation. However, the test method needs a very long time to identify the characteristic of sedimentation-consolidation of dredged soil. Therefore, in this study, in order to supplement the weakness of the Column test which needs such a long time, and in order to identify the characteristic of the sedimentation-consolidation for dredged soil in a short time, the Geo-centrifuge test was examined as an alternative method. The result considered that Geo-centrifuge test would be useful to identify the characteristic of sedimentation-consolidation for dredged soil efficiently.

Prediction and Analysis of Pre-Consolidation by Unconfined Compressive Strength (일축압축강도에 의한 선행압밀응력 예측 및 분석)

  • Song, Chang Seob;Kim, Myeong Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.71-77
    • /
    • 2016
  • This study was to evaluate the feasibility of pre-consolidation pressure distribution characteristic of western and southern coastal region, using correlation of unconfined compressive strength and preceding research equation. Pre-consolidation of western and southern region showed similar trends undrained shear strength and pre-consolidation pressure in proportion to unconfined compressive strength. Predicted results of U.S. NAVY. (1982) equation revealed a small error western 9.7 % and southern 0.4 %. Prediction correlation results of pre-consolidation using unconfined compressive strength revealed an error western 16.8 % and southern 0.7 %. It was reported that less than 20 percent of pre-consolidation pressure prediction result of Casagrande forecasting error. Estimates of pre-consolidation pressure are possible, before the standard consolidation test, because it was reported that less than 20 % of the forecasting errors of Casagrande.

A Study on the Effect of Consolidation according to the depth of Vertical Drains (Drain 타설심도에 따른 압밀효과에 관한 연구)

  • Son, Dae-San;Jang, Jeong-Wook;Park, Sik-Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1187-1194
    • /
    • 2006
  • This study analyzed characteristics of soft ground consolidation according to depths of vertical drain. As the result, when the depth ratio of vertical drains (L/D) were 0.5, 0.7, and 1.0, consolidation characteristics were similar up to 70% in consolidation degree under one-dimensional drain condition. However, above this degree, consolidation speed became slower as L/D became smaller. Two-dimensional drain condition also showed a similar tendency, but when L/D was 1.0, the consolidation speed was relatively higher.

  • PDF

The Influence of Deformation Modes on the Coefficient of Consolidation in the Normally Consolidated Clay (변형형상에 따른 정규압밀 점성토의 압밀계수 변화)

  • Park, Jae-Hyeon;Jeong, Young-Hoon;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.823-830
    • /
    • 2004
  • Consolidation tests under various deformation modes were performed to investigate the effect of deformation modes on the coefficient of consolidation in the normally consolidated clay in remolded and undisturbed clay. The degree of soil anisotropy was evaluated using cross-anisotropic elasticity theory suggested by Graham et al.(1983). Experimental results showed that the vertical compressibility was larger than the horizontal compressibility by $12{\sim}21%$ for the remolded clay and by $23{\sim}60%$ for the undisturbed clay, respectively. The results of a series of consolidation tests under the specific deformation modes showed that the coefficient of consolidation under 1 dimensional vertical strain condition was larger than that under 3 dimensional strain condition due to different deformation mode. Furthermore, the coefficient of consolidation under 1 dimensional vertical strain condition was larger than that under 1 dimensional horizontal strain condition by $40{\sim}60%$ in undisturbed clay, which clearly emphasized the significant effect of soil anisotropy on the rate of consolidation. Consequently, it can be concluded that the anisotropic deformation modes of soils, especially naturally deposited clays, should be taken into account for more accurate evaluation of the coefficient of consolidation.

  • PDF

Settlement Problems in Shallow Foundations (얕은 기초에서의 침하문제)

  • 이상덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.53-80
    • /
    • 2002
  • Settlement in the Shallow Foundation are presented. Various practical methods to calculate immediate settlement, consolidation settlement, and secondary compression of the compressive soils under the shallow foundation are summerized. Especially the critical depth for settlement calculation, the contact pressure, the allowable settlement of the shallow foundation are recommended.

  • PDF

A study on the Consolidation Characteristic of Cohesive Soil by Plastic Index (소성지수에 따른 점성토의 압밀특성에 관한 연구)

  • Kim, Chan-Kee;Cho, Won-Beom;Lee, Seung-Lun;Choi, Woo-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.99-109
    • /
    • 2008
  • The standard consolidation tests using the incremental loading technique test (IL) were performed on remolded normal consolidation and undisturbed clay samples to find out the effects of plastic index and loading period on consolidation in this study. The remolded samples used were prepared by mixing Gunsan-Samangum clay with bentonite so that they may have plasticity indexes of 15, 30, 45, and 60%, respectively. The undisturbed clay samples were collected from Inchon, Kwangyang, and Uoolsan. The samples were tested at the condition of 4 different loading periods (1, 2, 4, and 8 days). Settlement, coefficient of consolidation, compression index, secondary compression index, and pore water pressure characteristics were investigated from the plastic index and loading period aspects, and the compression index, coefficient of consolidation, and secondary compression index were formulated in terms of the plastic index and loading. To verify the applicability of proposed equations, the settlements obtained from Terzaghi's theory, modified Cam-Clay model (elasto-plastic model), and the Sekiguchi model (elasto-viscoplastic mode) were compared with the test results. The comparison indicates that the Sekiguchi model incorporating the secondary consolidation characteristic well predicts the results.

Self-weight Consolidation Analysis of Soft Dredged Clay Ground (준설성토지반의 자중압밀해석)

  • Kim, Hyun-Tae;Lee, Eun-Sung;Kim, Seog-Yeol;Hong, Byung-Man
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.151-154
    • /
    • 2003
  • This paper reviews depositional environments and consolidation characteristic of Soft Dredged Clay fill and then analytical solution of self-weight consolidation is made to find consolidated state. It's known that Soft Dredged Clay Ground is in the under-consolidated state under $U{\fallingdotseq}30%$ from analytical solution. It is effective for higher consolidation rate that the time of Dredge is shorter ani the time of leave is longer. It is conclude that the under-consolidated state should be considered in prediction of consolidation settlement.

  • PDF

A Study on Consolidation Characteristics in Marine Clay by Sand Drain (Sand Drain에 의한 점성토의 압밀 특성)

  • Chon, Yong-Baek;Gwak, Soo-Jeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.83-89
    • /
    • 2004
  • The analysis about consolidation characteristic in soft clay has been depending one-dimension consolidation analysis. but, drain and undrain zone are explicated as homogeneous by consolidation behavior following consoli- dated settlementsoft in soft clay. 1) Established sand drain in soft clay in many types, and measured water content, unconfined compression strength, vertical stress, horizontal stress, vertical settlement, pore water pressure. 2) Arranged the result from the test and numerically explicated effective stress, total stress, and effective stress path at the drain and undrain zone. 3) We also analyzed and comparied elastic and elastic-plastic in soft clay using measured data. The result analyzed does not approach to a special theory, but, it is well in accord with the result of other investigator's study in the same condition.

  • PDF

An Experimental Research About Settling and Consolidation Characteristic of Dredged Soil in West Coast (서해안 준설토의 침강압밀특성에 관한 실험적 연구)

  • Lee, Seung-Ho;Lee, Jeong-Hak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.29-36
    • /
    • 2011
  • In this study, settling experiment was performed about cohesive and sandy soils among representative sample expected to dredge and dump for analysis of settling and consolidation characteristic. The analysis showed the definite difference between cohesive soils and sandy soils of relationships with settling and consolidation coefficient, a water content, interfacial heights. But directly after a dredged reclamation, prediction results about a initial volume change showed that cohesive soil of a water content change was decreased rapidly as time goes by, but sandy soils made no difference in a water content change. Results were compared and analyzed with the settling and consolidation coefficient and a initial settling velocity by real soil amounts for a feasibility check about test conditions applied to these experiment: we judge that test conditions are appropriate, each material by such these analyses suggests the scope of settling and consolidation coefficient, average and the representative relational formula.