• Title/Summary/Keyword: Consolidation Characteristics

Search Result 505, Processing Time 0.032 seconds

Experimental Study on the Consolidation Characteristics of Kwang-Yang Clay by Large Block sampling (대형자연시료를 이용한 광양점토의 압밀특성에 관한 실험적 연구)

  • Kim, Jong-Kook;Yu, Seong-Jin;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.429-436
    • /
    • 2005
  • In this study, we have compared with the differences between the extent of sampling disturbance and consolidation characteristics by experiments, which are consolidation test and have been performed with Kwang-Yang clay samples. The effects on sampling disturbance to consolidation characteristics of soft clay have been inverstigated by using soil samples obtained from large block sampling and piston sampling methods. Through a few experiments, we've got important results which are that the consoilidation parameter of large block sample(Pc, Cc, Cv) is much larger than the value of parameter of piston sample. We've also found the fact that the large block sample using the large size sampler is much better than piston sample in the quality of goods to lessen the effects on disturbance of sampling. When compared to the parameter of consolidation along with the methods of experiment, we found that the result performed by large size consolidation test is the greatest one and CRS is much better than standard consolidation test to seek for proper parameter.

  • PDF

Consolidation Characteristics of Clay and Pond Ash Soil Mixture (점토와 매립회 혼합토의 압밀특성)

  • Chae, Deok-Ho;Yune, Chan-Young;Kim, Kyoung-O;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.45-54
    • /
    • 2011
  • In this study, the consolidation characteristics are investigated on the artificial soil mixture of kaolinite, fine soils representing dredged soils and reclaimed coal ash from the ash ponds. A large sedimentation chamber was designed and manufactured to produce the artificial soil mixture with uniform stress history. In order to examine the consolidation characteristics in lateral and vertical directions, standard consolidation and Rowe Cell tests were performed. From the results of standard consolidation tests, the artificial soil mixture with coal ash showed lower compressibility and the larger consolidation coefficients enough to aid in early stabilization of the reclaimed sites compared with the kaolinite only. Also, in order to examine the consolidation characteristics when applying vertical drains, the drainage material was installed and tested in the Rowe Cell. The Rowe Cell test results show that the artificial soil mixture yields higher coefficient of consolidation. Thus, the application of artificial soil mixture on the reclaimed sites can shorten the consolidation time.

A Study on the Effect of Consolidation according to the depth of Vertical Drains (Drain 타설심도에 따른 압밀효과에 관한 연구)

  • Son, Dae-San;Jang, Jeong-Wook;Park, Sik-Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1187-1194
    • /
    • 2006
  • This study analyzed characteristics of soft ground consolidation according to depths of vertical drain. As the result, when the depth ratio of vertical drains (L/D) were 0.5, 0.7, and 1.0, consolidation characteristics were similar up to 70% in consolidation degree under one-dimensional drain condition. However, above this degree, consolidation speed became slower as L/D became smaller. Two-dimensional drain condition also showed a similar tendency, but when L/D was 1.0, the consolidation speed was relatively higher.

  • PDF

Strain-rate-dependent consolidation characteristics of Busan clay (부산점토의 변형률 속도 의존적인 압밀특성)

  • Kim, Yun-Tae;Jo, Sang-Chan;Jo, Gi-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.240-247
    • /
    • 2005
  • In order to analyze effects of strain rate on consolidation characteristics on Busan clay, a series of constant rate of strain(CRS) consolidation tests with different strain rate and incremental loading test(ILT) were performed. From experimental test results, it was found that the preconsolidation pressure was dependent on the corresponding strain rate occurred during consolidation process. Also, consolidation curves normalized with respect to preconsolidation pressure gave a unique stress-strain curve. Coefficient of consolidation and permeability estimated from CRS test had a tendancy to converge to a certain value at normally consolidated range regardless of strain rate. An increase in excess pore pressure without change of total stress was noted on the incremental loading test after the end of loading.

  • PDF

A Study on Determination of the Degree of Consolidation and Time Factor Considering Site Ground Characteristics (현장 지반특성을 고려한 압밀도 및 시간계수 결정에 관한 연구)

  • Choi, Min-Ju;Kim, Hung-Nam;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • This study is conducted to minimize the problems caused by the difference between the settlement and settlement time of the one-dimensional consolidation analysis by the Terzaghi's consolidation theory, which is generally used in domestic soft soil design, from the settlement and settlement time measured at the field site. Consolidation-time factor considering the field site characteristics can be determined using the relationship among the degree of consolidation, settlement time, and time factor, the time-settlement curve measured at the field is reverse- analysis using a numerical-analysis technique to reproduce the same consolidation behavior as in the field. Time-settlement and time-excessive pore water pressure data when the same consolidation behavior as the site is reproduced Consolidation-time factor of the soil of Songsan Green City by settlement and excess pore water pressure was calculated using the settlement and excess pore water pressure for each settlement time. If the results of this study use the Terzaghi consolidation-time factor, which does not consider the consolidation characteristics of the soft ground target area, it is difficult to determine the end time of the soft ground during construction. It is necessary to use the established settlement-time factor.

Numerical analysis of Self-Boring Pressuremeter test results using FEM - Consolidation characteristics of clay (유한요소해석을 이용한 SBP 시험의 결과해석 - 점성토 지반의 압밀특성)

  • 장인성;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.67-74
    • /
    • 1999
  • Self-Boring Pressuremeter Test(SBPT) is known to be the most effective in-situ test method which can reliably determine consolidation characteristics as well as deformation modules and untrained shear strength. In order to derive the coefficient of consolidation using SBPT results it is necessary to obtain the dissipation behavior from the pore pressure change with time during constant radial strain(generally 10%) and to derive the reliable time factor(Τ) from the analytical method which considers the real in-situ conditions. As previous studies on time factor are based on the assumptions of plane strain condition that the membrane of SBP is infinite, of untrained condition during the expansion of the probe and of elastic soil behavior during consolidation, these analyses can't consider the real boundary conditions and the real soil behaviour. In this study, consolidation analysis similar to real in-situ conditions including test procedure is conducted using finite element program which employs MCC model and Biot theory. Time factor considering the effects of finite membrane length, the total pressure change during consolidation and partial drainage is proposed and compared with previous results.

  • PDF

Study on Consolidation Behaviors of Soft Ground by Plastic Board Drain Using Model Tests (실내모형실험에 의한 Plastic Board Drain이 적용된 연약지반의 압밀거동에 관한 연구)

  • You, Seung-Kyong;Hong, Won-Pyo;Yoon, Gil-Lim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.17-23
    • /
    • 2003
  • Accurate prediction of consolidation behaviors of the soft ground improved by plastic board drains is not easy because the consolidation characteristics of the improved ground has not been fully elucidated yet. The shape of drains is one of the most important factors which affect the consolidation characteristics of the improved ground. In this paper, a series of model consolidation tests of soft clay ground improved by plastic board drain were carried out, in order to investigate the effect of both plastic board width and stress level on consolidation characteristics of the improved ground. As the results, behaviors of both settlement and excess pore pressure dissipation were elucidated. Also, the non-uniform distribution of water content in the model ground was obtained. Then, in order to investigate the effect of vertical drainage on the consolidation behavior in the model tests, the comparison between experimental consolidation behaviors and Barron's theoretical ones were carried out. As the results, it was elucidated that the consolidation behavior in the model tests was affected not only by radial drainage but also by vertical drainage.

  • PDF

Assessement of Consolidation Characteristics by Field Instrumentation (현장계측사례를 통한 압밀특성 평가)

  • Song, Jeong-Rak;Baek, Seung-Hun;O, Da-Yeong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.121-130
    • /
    • 1992
  • Assessement of comsolidation characteristics of soft soil is very important in the project of soft soil improvement. In the design step, the consolidation characteristics of soil is determined by the laboratory tests (typically oedometer test), generally. But there is big differences between the condition of laboratory test and the condition of field(in situ). the differences results in the considerable difference between the predicted and measured consolidation behavior. This article analyzed the consolidation data of the "SOFT SOIL IMPROVEMENT PROJECT of the 2nd Namdong Industrial Complex at Inchon". The project was improving the road way net work in the 2nd Namdong Industrial Complex by preloading and sand pile method. Field instrumentation was performed at 10 points which consist of pneumatic piezometers, magnetic probe extensometers, inclinometers and electronic dipmeter. The results showed that there is big difference in the laboratory predicted consolidation behavior and field consolidadion behavior. Also there was big difference in the settlement behavior and pore pressure behavior. This article investigated the above factors by comparing the settlement, pore pressure and strength at different conditions.onditions.

  • PDF

Estimation of Consolidation Period for Dredged Soil by Mikasa Theory (Mikasa 압밀이론에 의한 준설토지반의 압밀기간 산정에 관한 연구)

  • 주재우;정규향;조진구
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.299-306
    • /
    • 2003
  • Dredged soil experiences large settlement during consolidation because of its high water contents. Large settlement alters the thickness of the consolidation layer greatly with time. However, the consolidation theory proposed by Terzaghi assumes the thickness of the consolidation layer to stay constant. Mikasa has developed a more rational theory considering the change of thickness of consolidation layer but it is not well applied at the site. In this study consolidation tests have been performed using Rowe cell for the four dredged clay samples with a water content of 100%, 120%, 133% and 150%. From the test results compression index characteristics and coefficient of consolidation characteristics have been investigated. Coefficients of consolidation obtained by Terzaghi's and Mikasa's theories, have been evaluated and compared with each other. When Mikasa theory is applied in the field design, the period to reach the required degree of consolidation has been reduced compared with the result by Terzaghi theory because the time factor $T_{v}$ by Mikasa theory decreases with increasing of final strain of consolidation layer, Calculation method consolidation time by Mikasa theory was concisely explained for its practical use.e.

Consolidation Characteristics of Lowly Organic Soil under Repeated Loading (반복압밀하중을 받는 저유기질토의 압밀특성)

  • 김재영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.2
    • /
    • pp.61-69
    • /
    • 1999
  • When the repeated loading, such as vehicel etc, acts on soft ground, consolidation behaviors due to repeated loading wil show different from standard one. A series of tests was performed to investigate the characteristics of consolidation of lowly organic soil subjected to repeated loadings. Lowly organic soil with Lig. 23.5% was sampeld in Chonbuk Province and tested using a partially and a fully repeated loadings. From test results it was found that void ration, volume change, consolidation coefficient, permeability and secondary consolidation coefficient were greatly affected according to the repetition number and the load weight. The secondary consolidation coefficient was decreased with increase of the repetition number. The results obtained from this research can be used as basic for the improvement of soft ground.

  • PDF