• Title/Summary/Keyword: Connection behavior

Search Result 1,125, Processing Time 0.028 seconds

Experimental Study on Bond Behavior of 1/12.5 Scale Model of the Steel Tubular Joint Connection Subjected to Compressive Loads (압축하중을 받는 1/12.5 축소모형 강관 연결부의 부착전단 거동에 대한 실험적 연구)

  • Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.19-26
    • /
    • 2024
  • In this study, the compressive behavior of a 1/12.5 scale model of a wind tower support structure connection was experimentally analyzed. A high-performance cementitious grout with a compressive strength of 140 MPa was used to fill the connection, and experiments were conducted with shear key spacing, the shape, and connection length as variables. When the number of shear keys in the connection is the same, the smaller the spacing of the shear keys than the length of the connection, the higher the shear strength, and for the same spacing and connection length, the higher the height of the shear keys, the higher the strength. In addition, it was found that the strength showed a linear behaviour until the connection slip reached 1.0 mm, and it reached the maximum strength at 7.0 mm connection slip showing a non-linear behaviour as the load increased. It was found that the failure mode changed from interfacial shear failure to grout failure as the strength increased according to the shape and spacing of the shear key, and brittle failure did not occur due to steel fibers.

Behavior of semi-rigid steel frames under near- and far-field earthquakes

  • Sharma, Vijay;Shrimali, Mahendra K.;Bharti, Shiv D.;Datta, Tushar K.
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.625-641
    • /
    • 2020
  • The realistic modeling of the beam-column semi-rigid connection in steel frames attracted the attention of many researchers in the past for the seismic analysis of semi-rigid frames. Comparatively less studies have been made to investigate the behavior of steel frames with semi-rigid connections under different types of earthquake. Herein, the seismic behavior of semi-rigid steel frames is investigated under both far and near-field earthquakes. The semi-rigid connection is modeled by the multilinear plastic link element consisting of rotational springs. The kinematic hysteresis model is used to define the dynamic behavior of the rotational spring, describing the nonlinearity of the semi-rigid connection as defined in SAP2000. The nonlinear time history analysis (NTHA) is performed to obtain response time histories of the frame under scaled earthquakes at three PGA levels denoting the low, medium and high-level earthquakes. The other important parameters varied are the stiffness and strength parameters of the connections, defining the degree of semi-rigidity. For studying the behavior of the semi-rigid frame, a large number of seismic demand parameters are considered. The benchmark for comparison is taken as those of the corresponding rigid frame. Two different frames, namely, a five-story frame and a ten-story frame are considered as the numerical examples. It is shown that semi-rigid frames prove to be effective and beneficial in resisting the seismic forces for near-field earthquakes (PGA ≈ 0.2g), especially in reducing the base shear to a considerable extent for the moderate level of earthquake. Further, the semi-rigid frame with a relatively weaker beam and less connection stiffness may withstand a moderately strong earthquake without having much damage in the beams.

Experimental study of the behavior of beam-column connections with expanded beam flanges

  • Ma, Hongwei;Wang, Jiwei;Lui, Eric M.;Wan, Zeqing;Wang, Kun
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.319-327
    • /
    • 2019
  • This paper describes an experimental study of steel beam-column connections with or without expanded beam flanges with different geometries. The objectives of this study are to elucidate the cyclic behavior of these connections, identify the location of the plastic hinge zone, and provide useful test data for future numerical simulations. Five connection specimens are designed and tested under cyclic load. The test setup consists of a beam and a column connected together by a connection with or without expanded beam flanges. A constant axial force is applied to the column and a time varying point load is applied to the free end of the beam, inducing shear and moment in the connection. Because the only effect to be studied in the present work is the expanded beam flange, the sizes of the beam and column as well as the magnitude of the axial force in the column are kept constant. However, the length, width and shape of the expanded beam flanges are varied. The responses of these connections in terms of their hysteretic behavior, failure modes, stiffness degradation and strain variations are experimentally obtained and discussed. The test results show that while the influence of the expanded beam flanges on hysteretic behavior, stiffness degradation and energy dissipation capacity of the connection is relatively minor, the size of the expanded beam flanges does affect the location of the plastic hinge zone and strain variations in these beam-column joints. Furthermore, in terms of ductility, moment and rotational capacities, all five connections behave well. No weld fracture or premature failure occurs before the formation of a plastic hinge in the beam.

Cyclic Test of welding connections for Steel-Plate Concrete Column to H-shaped Steel Girders (강판 콘크리트(SC) 기둥과 H형강 보의 용접 접합부에 대한 반복 이력 실험)

  • Park, Ho Young;Kang, Cheol Kyu;Choi, Byong Jeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.63-71
    • /
    • 2014
  • This study presents an experimental study of the structural behavior for steel plate-concrete column-to-steel girder connections. Experiments were carried out to investigate the moment-rotation characteristics, failure behavior and ultimate moment capacity of these connections. The results of this experimental study involving three welded moment-resisting connections subjected to cyclic loading are presented. The specimens were fabricated at full scale to evaluate their hysteretic behavior. A description of the test specimens, the details of the joint, the test system and the testing methods are described. The test results showed that the structural behavior of these composite connections was influenced by the connection details.

A Study on the Flexibility of Semi-Rigid Steel Frames under Lateral Loadings( I ) (횡하중을 받는 반강접 철골 골조의 유연도에 관한 연구( I ) -접합부 해석모형을 중심으로-)

  • KANG, Cheol Kyu;HAN, Young Cheol;LEE, Gag Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.127-137
    • /
    • 1996
  • Connections as basic elements and an integrated part of a steel frame has an effect on the frame's performance. Conventional analysis and design techniques are based on either idealized fixed or pinned conditions. In fact, the use of rigid or pinned connection model in steel frame analysis serves the purpose of simplifying the analysis and design processes, but all connections used in current pratice possess stiffness and transfer moment which fall between the extreme cases of fully rigid and ideally pinned. To predict the behavior of the semi-rigid steel frames, it is necessary to predict the moment-rotation behavior of the beam-to-column connections. In this research, prediction equation for moment-rotation behavior of the beam-to-column connection is suggested and the effect of design parameters has investigated. Prediction model, in a nondimensional form shows the moment-rotation characteristic for connections. It is composed of the curve fitting power function using standardization constant K and 4 parameter $KM_o$, ${\theta}_0$, b, n based on the pretest result about moment-rotation behavior of connection.

  • PDF

Evaluation the behavior of pre-fabricated moment connection with a new geometry of pyramidal end block under monotonic and cyclic loadings

  • Kazemi, Seyed Morteza;Sohrabi, Mohammad Reza;Kazemi, Hasan Haji
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.391-404
    • /
    • 2018
  • Researchers have been long studying new building implementation methods to improve the quality of construction, reduce the time of assembly, and increase productivity. One of these methods is the use of modular pre-fabricated structural forms that are composed of a beam, column, short column, pyramidal end block, and connection plates. In this study, a new geometry for the pyramidal end block was proposed that helps facilitate the assembly procedure. Since the proposed configuration affects the performance of this form of connection, its behavior was evaluated using finite element method. For this purpose, the connection was modeled in ABAQUS and then validated by comparing the outputs with experimental results. The research proceeded through analyzing 16 specimens under monotonic and cyclic loading. The results indicated that using the pyramidal end block not only makes the assembly process easier but also reduces the out-of-plane displacement of the short column webs and the vertical displacement of beam end. By choosing appropriate section properties for column and beam, the connection can bear a rotation up to 0.01 radians within its inelastic region and a total of 0.04 radians without any significant reduction in its bearing capacity.

An Experimental study on the Bolted Moment Connection between H-Beam and CFT Column (CFT기둥과 H-형강보의 볼트 접합부에 관한 실험적 연구)

  • Park, Soon Kyu;Roh, Hawn Kewn
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.789-799
    • /
    • 1998
  • The purpose of this study is to propose the prototypes of bolted end plate moment connection between CFT column and H-beam sections. Nine different types of bolt are designed in this study. The shapes of those bolt are straight. bent, hooked or stud-type. The end plate moment connection between CFT column and H-beam sections which are jointed by those bolts are studied experimentally to compare their performances. The simple beam bending tests are carried out to investigate the structural behavior of beam-to-column connections. The experimental results show that some of the bolted end plate connection types have quite good performance in the structural behavior but still have a lot of week points to be solved for the efficiency of construction.

  • PDF

Connection Behavior of FRP Box Member of Connection Method (연결방법에 따른 FRP 박스 부재의 연결거동 특성)

  • Jang, Hwa-Sup;Kim, Ho-Sun;Kwak, Kae-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.455-463
    • /
    • 2010
  • This is a basic experimental study to apply FRP modular box member to a variety of construction structures exposed to flexural strength, such as a slab and a girder. Tests were conducted under various conditions in order to analyze jointing performance features of the developed FRP modular box member as a large section. For the methods of jointing FRP modular box member, chemical connection, mechanical connection, and a combination of both were used to test both vertical and horizontal jointing. As a result of the test, using urethane+two bolts+sheets was the most efficient method of connecting FRP modular box member, and confirmed the efficient behavior by a finite element analysis.

An Experimental Study on Shear Friction Behavior of RC Slab and SC(Steel Plate Concrete) Wall Structure with Connection Joint (RC 슬래브와 SC 벽 접합부의 전단마찰 거동에 관한 실험연구)

  • Lee, Kyung Jin;Hwang, Kyeong Min;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.623-634
    • /
    • 2013
  • In this study, the structure behavior of RC slab and SC shear wall connection was investigated. Also experimental study was performed to evaluate the factor of safety of demand shear connection strength in KEPIC SNG Standard. As a result, shear friction strength of connection was known about 300kN and shear strength of rebar increased according to the displacement increase. With the installment of the lower rebars, 40% shear strength increased compared to the non-rebar specimen.

A Study on the Ultimate Strength of Tube-Gusset Connection Considering Eccentricity (편심이 고려된 강관-가셋트 접합부의 극한 내력)

  • Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.201-210
    • /
    • 2001
  • A numerical analysis and experimental study were performed to investigate the behavior and strength of tube-gusset connection subjected to axial and lateral forces. To investigate the behavior of the connections, experiment was conducted by applying three directional loads. Local buckling and local plastic bending deformation of the connection were observed from the test. Analytical results were compared with test results for the limited cases. Primary interests here are the effect of eccentricity on the strength of the connection. To suggest a formula for the strength of tube-gusset connection, lateral forces were replaced with equivalent wall moment and eccenrtric vertical component force of lateral force. Ultimate strength formula for the each force was proposed. Finally, nondimensionalized ultimate strength interaction relationships between the wall moment of tube($M_w$), vertical axial force($P_v$), and eccentric vertical component of lateral force($P_e$) were formulated through parametric study.

  • PDF