• 제목/요약/키워드: Connection Weight

검색결과 285건 처리시간 0.027초

Estimation of Hovering Flight Time of Battery-Powered Multicopters

  • Cho, Mun jin;Han, Cheolheui
    • 항공우주시스템공학회지
    • /
    • 제15권4호
    • /
    • pp.11-20
    • /
    • 2021
  • The estimation of hovering flight time of multicopters using the battery power propulsion system is important for the development and design of the aircraft and its operation. For a given operational weight, the maximum possible battery weight can be decided using both a conventional energy density method and a new Peukert law. In the present study, the hovering flight time is predicted using both methods. The specific data of multicopters in the published literatures were employed for the computation of the hovering flight time. The results were validated with the measured data. The effect of figure of merit of propeller, battery discharging process on the hovering flight time was evaluated, Finally, the effect of the battery cell and package connection types on the hovering time was investigated. It was found that the combination of serial battery cell connections and parallel package connection is the bast in the endurance maximization aspect. As the cell number increases in a package, the hovering flight time is increased. There exists the max. battery ratio for the given takeoff gross weight.

3차원 수직·수평 건축공간분석을 위한 ERAM모델의 보행에너지 가중치 산정 연구 (The Method to Calculate the Walking Energy-Weight in ERAM Model to Analyze the 3D Vertical and Horizontal Spaces in a Building)

  • 최성필;최재필
    • 대한건축학회논문집:계획계
    • /
    • 제34권6호
    • /
    • pp.3-14
    • /
    • 2018
  • The aim of this study is to propose a method for calculating the weight of walking energy in ERAM model by calculating it for the analysis of vertical and horizontal spaces in a building. Conventional theories on the space analysis in the field of architectural planning predict the pedestrian volume of network spaces in urban street or in two-dimensional plane within a building, however, for vertical and horizontal spaces in a building, estimates of the pedestrian volume by those theories are limited. Because in the spatial syntax and ERAM model have been applied weights such as the spatial depth, adjacent angles, and physical distances available only to the two-dimensional same layer or plane. Therefore, the following basic assumptions and analysis conditions in this study were established for deriving a predictor of pedestrian volume in vertical and horizontal spaces of a building. The basic premise of space analysis is not to address the relationship between the pedestrian volume and the spatial structure itself but to the properties of spatial structure connection that human beings experience. The analysis conditions in three-dimensional spaces are as follows : 1) Measurement units should be standardized on the same scale, and 2) The connection characteristics between spaces should influence the accessibility of human beings. In this regard, a factor of walking energy has the attributes to analyze the connection of vertical and horizontal spaces and satisfies the analysis conditions presented in this study. This study has two implications. First, this study has shown how to quantitatively calculate the walking energy after a factor of walking energy was derived to predict the pedestrian volume in vertical and horizontal spaces. Second, the method of calculating the walking energy can be applied to the weights of the ERAM model, which provided the theoretical basis for future studies to predict the pedestrian volume of vertical and horizontal spaces in a building.

A Simple Approach of Improving Back-Propagation Algorithm

  • Zhu, H.;Eguchi, K.;Tabata, T.;Sun, N.
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.1041-1044
    • /
    • 2000
  • The enhancement to the back-propagation algorithm presented in this paper has resulted from the need to extract sparsely connected networks from networks employing product terms. The enhancement works in conjunction with the back-propagation weight update process, so that the actions of weight zeroing and weight stimulation enhance each other. It is shown that the error measure, can also be interpreted as rate of weight change (as opposed to ${\Delta}W_{ij}$), and consequently used to determine when weights have reached a stable state. Weights judged to be stable are then compared to a zero weight threshold. Should they fall below this threshold, then the weight in question is zeroed. Simulation of such a system is shown to return improved learning rates and reduce network connection requirements, with respect to the optimal network solution, trained using the normal back-propagation algorithm for Multi-Layer Perceptron (MLP), Higher Order Neural Network (HONN) and Sigma-Pi networks.

  • PDF

착탈결구식 복합소재 바닥판의 연결부 거동분석 (Development of Composite Pedestrian Bridge Deck and Its Snap-fit Connection)

  • 이성우;정규상
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.280-284
    • /
    • 2005
  • Existing construction materials such as concrete and steel have chronic problems; deterioration and corrosion. Owing to its special features of light weight ‘ high durability, anti-corrosion, composite material used in civil infrastructure can not only solve fundamental problems of deterioration and corrosion, but also reduce both construction and maintenance cost significantly. After the fabrication of deck panel with snap-fit connection by pultrusion through composite design according to stacking sequence of composite laminates and structural analysis, performance of decks will be verified and evaluated by structural tests.

  • PDF

Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections

  • Hayalioglu, M.S.;Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • 제4권6호
    • /
    • pp.453-469
    • /
    • 2004
  • In this article, a genetic algorithm based optimum design method is presented for non-linear steel frames with semi-rigid connections. The design algorithm obtains the minimum weight frame by selecting suitable sections from a standard set of steel sections such as European wide flange beams (i.e., HE sections). A genetic algorithm is employed as optimization method which utilizes reproduction, crossover and mutation operators. Displacement and stress constraints of Turkish Building Code for Steel Structures (TS 648, 1980) are imposed on the frame. The algorithm requires a large number of non-linear analyses of frames. The analyses cover both the non-linear behaviour of beam-to-column connection and $P-{\Delta}$ effects of beam-column members. The Frye and Morris polynomial model is used for modelling of semi-rigid connections. Two design examples with various type of connections are presented to demonstrate the application of the algorithm. The semi-rigid connection modelling results in more economical solutions than rigid connection modelling, but it increases frame drift.

11-kV Series-Connected H-Bridge Multilevel Converter for Direct Grid Connection of Renewable Energy Systems

  • Islam, Md. Rabiul;Guo, Youguang;Zhu, Jian Guo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.70-78
    • /
    • 2012
  • Due to the variable nature of renewable energy resources and power demand by consumers, it is difficult to operate a power system installed with only one type of renewable energy resource. Grid-based renewable generation may be the only solution to overcome this problem. The conventional approach based on a low-voltage converter with power frequency transformer is commonly employed for grid connection of offshore renewable energy systems. Because of the heavy weight and large size of the transformer, the system can be expensive and complex in terms of installation and maintenance. In this paper, an 11-kV series connected H-bridge (SCHB) multilevel voltage source converter (VSC) is proposed to achieve a compact and light direct grid connection of renewable energy systems. This paper presents the design, simulation and analysis of a five level (5L)-SCHB and an eleven level (11L)-SCHB VSC for 11-kV grid-based renewable energy systems. The performance, cost, modulation scheme and harmonic spectra of the converter are analyzed.

합성 PC부재의 Steel-joint Connection Method 개발 기초연구 (A basic study of steel-joint connection method of composite precast concrete members)

  • 김근호;이동훈;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.10-11
    • /
    • 2013
  • Green Frame is a column-beam system formed by composite precast concrete column and beam connected with steel buried in both members. During the installation of Green columns, the columns of Green Frame, covering 3 floors per each piece and beams, the eccentricity can be observed due to the construction error and the weight of beam itself. Such eccentricity may have a little influence on a single frame, yet, it can develop critical issues to the installation of subsequent beams or beams on the upper floors in the context of a building as a whole that has multiple frames. These issues lead to delay in frame installation, decrease of productivity and increase of cost, etc. Therefore, this study presents a steel-joint connection method in order to solve the issues. The steel-joint connection method exists on slope plane and reinforcing plate in steel frame buried in composite PC members. Through this method, the issues can be resolved without requiring additional equipment or manpower.

  • PDF

Studies on restoring force model of concrete filled steel tubular laced column to composite box-beam connections

  • Huang, Zhi;Jiang, Li-Zhong;Zhou, Wang-Bao;Chen, Shan
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1217-1238
    • /
    • 2016
  • Mega composite structure systems have been widely used in high rise buildings in China. Compared to other structures, this type of composite structure systems has a larger cross-section with less weight. Concrete filled steel tubular (CFST) laced column to box-beam connections are gaining popularity, in particular for the mega composite structure system in high rise buildings. To enable a better understanding of the destruction characteristics and aseismic performance of these connections, three different connection types of specimens including single-limb bracing, cross bracing and diaphragms for core area of connections were tested under low cyclic and reciprocating loading. Hysteresis curves and skeleton curves were obtained from cyclic loading tests under axial loading. Based on these tested curves, a new trilinear hysteretic restoring force model considering rigidity degradation is proposed for CFST laced column to box-beam connections in a mega composite structure system, including a trilinear skeleton model based on calculation, law of stiffness degradation and hysteresis rules. The trilinear hysteretic restoring force model is compared with the experimental results. The experimental data shows that the new hysteretic restoring force model tallies with the test curves well and can be referenced for elastic-plastic seismic analysis of CFST laced column to composite box-beam connection in a mega composite structure system.

승압 초퍼 기능이 내장된 새로운 태양광 발전용 파워컨디셔너의 개발 (Development of Boost Chopper with Built New Renewable Energy in Grid-Connected Distributed Power System)

  • 문상필;이수행;김영문
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.361-367
    • /
    • 2014
  • This paper is related to a new solar power conditioner for a built-in step-up chopper function. In the first step-up chopper proposed solar PV power conditioner for mutually connected in series with the input voltage of the bypass diodes are respectively connected to the positive terminal should install the mutual boosting chopper diode connected in series with the boost chopper switching element between the two power supply and at the same time the first and the second was connected to a second diode and a resonance inductor and a snubber capacitor in series with each other. And the common connection point between the bypass diode and the step-up chopper and the step-up chopper diode common connection point of the switching elements of the input voltage was set to the boost inductor for storing energy. In addition, between the step-up chopper and the step-up chopper diode and a switching element of a joint connection point of the first auxiliary diode and the second common connection point of the auxiliary diode was provided, the resonance capacitor. Between the step-up chopper and the step-up chopper diode and a switching element of a joint connection point and the common connection point of the resonance inductor snubber capacitor and connecting the third secondary diode, between two power supply lines is characterized by configuring the DC link capacitor bus lines in parallel. Therefore, it is possible to suppress the switching loss through, DC link bus lines, as well as there could seek miniaturization and weight reduction of the power conditioner itself by using a common capacitor of the non-polar non-polar electrolytic capacitor having a capacitor, the service life of the circuit can be extended and it is possible to greatly reduce the loss can be greatly improve the reliability of the product and the operation of the product itself.

Experimental and numerical study on mechanical behaviour of grouted splices with light-weight sleeves

  • Quanwei Liu;Tao Wu;Zhengyi Kong;Xi Liu;Ran Chen;Kangxiang Hu;Tengfei Xiang;Yingkang Zhou
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.165-182
    • /
    • 2024
  • Grouted sleeve splice (GSS) is an effective type of connection applied in the precast concrete structures as it has the advantages of rapidly assembly and reliable strength. To decrease the weight and cost of vertical rebar connection in precast shear walls, a light-weight sleeve is designed according to the thick-cylinder theory. Mechanical behaviour of the light-weighted GSS is investigated through experimental analysis. Two failure modes, such as rebar fracture failure and rebar pull-out failure, are found. The load-displacement curves exhibit four different stages: elastic stage, yield stage, strengthening stage, and necking stage. The bond strength between the rebar and the grout increases gradually from outer position to inner position of the sleeve, and it reaches the maximum value at the centre of the anchorage length. A finite element model predicting the mechanical properties of the light-weighted GSS is developed based on the Concrete Damage Plasticity (CDP) model and the Brittle Cracking (BC) model. The effect of the rebar anchorage length is significant, while the increase of the thickness of sleeve and the grout strength are not very effective. A model for estimating ultimate load, including factors of inner diameter of sleeves, anchorage length, and rebar diameter, is proposed. The proposed model shows good agreement with various test data.