• 제목/요약/키워드: Connected-components

검색결과 635건 처리시간 0.021초

저주파수 TRL 탐촉자를 이용한 Cast Stainless Steel 배관 용접부 초음파탐상기법 (UT Inspection Technique of Cast Stainless Steel Piping Welds Using Low Frequency TRL UT Probe)

  • 신건철;장희준;전영철;노익준;이동진
    • 한국압력기기공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.29-36
    • /
    • 2010
  • Ultrasonic inspection of heavy walled cast austenitic stainless steel(CASS)welds is very difficult due to complex and coarse grained structure of CASS material. The large size of anisotropic grain strongly affects the propagation of ultrasound by severe attenuation, change in velocity, and scattering of ultrasonic energy. therefore, the signal patterns originated from flaws can be difficult to distinguish from scattered signals. To improve detection and sizing capability of ID connected defect for heavy walled CASS piping welds, the low frequency segmented TRL Pulse Echo and Phased Array probe has been developed. The experimental studies have been performed using CASS pipe mock-up block containing artificial reflectors(ID connected EDM notch). The automatic pulse echo and phase array technique is applied the detection and the length sizing of the ID connected artificial reflectors and the results for detection and sizing has been compared respectively. The goal of this study is to assess a newly developed ultrasonic probe to improve the detection ability and the sizing of the crack in coarse-grained CASS components.

  • PDF

Design and Implementation of a New Multilevel DC-Link Three-phase Inverter

  • Masaoud, Ammar;Ping, Hew Wooi;Mekhilef, Saad;Taallah, Ayoub;Belkamel, Hamza
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.292-301
    • /
    • 2014
  • This paper presents a new configuration for a three-phase multilevel voltage source inverter. The main bridge is built from a classical three-phase two-level inverter and three bidirectional switches. A variable DC-link employing two unequal DC voltage supplies and four switches is connected to the main circuit in such a way that the proposed inverter produces four levels in the output voltage waveform. In order to obtain the desired switching gate signals, the fundamental frequency staircase modulation technique is successfully implemented. Furthermore, the proposed structure is extended and compared with other types of multilevel inverter topologies. The comparison shows that the proposed inverter requires a smaller number of power components. For a given number of voltage steps N, the proposed inverter requires N/2 DC voltage supplies and N+12 switches connected with N+7 gate driver circuits, while diode clamped or flying capacitor inverters require N-1 DC voltage supplies and 6(N-1) switches connected with 6(N-1) gate driver circuits. A prototype of the introduced configuration has been manufactured and the obtained simulation and experimental results ensure the feasibility of the proposed topology and the validity of the implemented modulation technique.

병렬 또는 직렬로 결합한 나선형 자장압축발전기의 출력특성 분석 (Output Characteristics of Parallel or Serially Connected Helical Magneto-Cumulative Generators)

  • 국정현;이흥호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권11호
    • /
    • pp.647-657
    • /
    • 2004
  • Helical magneto-cumulative generator(HMCG)s are very useful devices in suppling pulsed high current to inductance loads. To apply fast high voltage pulses to high impedance loads, high current outputs of HMCGs are required to be conditioned to higher voltages by using various pulse components such as opening/closing switches and pulse transformer. In this paper, stepping with the trends of requirements for ever-increasing energy in pulsed power applications coupling methods is investigated to obtain higher output energy by connecting several HMCGs in series or parallel way. The coil dimension of HMCGs used in series or parallel connections was 50 mm in diameter and 150 mm in length. The coil was fabricated by using enamel-coated copper wire of 1 mm in diameter. The highest energy amplification ratio and peak voltage of load were achieved from the serially connected four-barrel HMCG system. They were 68 and 34 kV, respectively, when the initial energy of 0.36 kJ was supplied into that system with the load of 0.4 μH. Within the tested range of inductance ratio, energy amplification ratio was found to be highly dependent on the inductance ratio of serial- and parallel-connected HMCG systems to load, which to be optimal around 500 was turned out. The experimental results showed that the output energy and voltage of load are controlled by connecting HMCGs in series or parallel.

Quasi-Notch Filter를 이용한 DC-DC-AC 계통연계형 단상 인버터에서의 저주파 전류 감소 기법 (Low Frequency Current Reduction using a Quasi-Notch Filter operated in Two-Stage DC-DC-AC Grid-Connected Systems)

  • 정홍주;김래영
    • 전력전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.276-282
    • /
    • 2014
  • In a single-phase grid-connected power system consisting of a dc-dc converter and a dc-ac converter, the current drawn from renewable energy sources has a tendency to be pulsated and contains double-fundamental frequency ripple components, which results in several drawback such as a power harvesting loss and a shortening of the energy source's life. This paper presents a new double-fundamental current reduction-scheme with a fast dc-link voltage loop for two-stage dc-dc-ac grid connected systems. In the frequency domain, an adequate control design is performed based on the small-signal transfer function of a two-stage dc-dc-ac converter. To verify the effectiveness of proposed control algorithm, a 1 kW hardware prototype has been built and experimental results are presented.

PMSG 적용 가변속 계통연계형 풍력발전 시스템의 통합 시뮬레이션 및 스위치 개방고장 진단기법 연구 (A Study on the Integrated Simulation and Condition Monitoring Scheme for a PMSG-Based Variable Speed Grid-Connected Wind Turbine System under Fault Conditions)

  • 김경화;송화창;최병욱
    • 조명전기설비학회논문지
    • /
    • 제27권3호
    • /
    • pp.65-78
    • /
    • 2013
  • To analyze influences under open fault conditions in switching devices, an integrated simulation and condition monitoring scheme for a permanent magnet synchronous generator (PMSG) based variable speed grid-connected wind turbine system are presented. Among various faults in power electronics components, the open fault in switching devices may arise when the switches are destructed by an accidental over current, or a fuse for short protection is blown out. Under such a faulty condition, the grid-side inverter as well as the generator-side converter does not operate normally, producing an increase of current harmonics, and a reduction in output and efficiency. As an effective way for a condition monitoring of generation system by online basis without requiring any diagnostic apparatus, the estimation schemes for generated voltage, flux linkage, and stator resistance are proposed and the validity of the proposed scheme is proved through comparative simulations.

Design of Gain Controller of Decoupling Control of Grid-connected Inverter with LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.124-126
    • /
    • 2008
  • Grid Connected inverter is produced current to deliver power to grid. To provide low THD current, LCL filters is effective to filter high frequency component of current output from inverter. To provide sinusoidal waveform, there are many researchers have been proposed several controllers for grid-connected inverter controllers. Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. But SRF based controller is contained cross-coupling components, which generate some difficulties to analyze. In this paper, SRF based controller is analyzed. By applying decoupling control, cross-coupling component is eliminated and single phase model of the system is obtained. Through this single phase model, gain controller is designed. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF

해수연결 배관계 소음감소기의 투과손실 측정에 관한 연구 (A Study on Determining the Transmission Loss of Water-Borne Noise Silencer in a Sea-Connected Piping System)

  • 박경훈
    • 한국음향학회지
    • /
    • 제26권6호
    • /
    • pp.286-292
    • /
    • 2007
  • 해수연결 배관계에서 발생되는 주요한 소음원은 함 내부 탑재장비의 원활한 작동을 위해 해수를 순환시키는 해수순환 펌프이다. 이러한 펌프에서 발생되는 토널 성분을 가지는 유체전달 소음은 적절한 소음감소기를 통해서 감소되어야 한다. 본 논문에서는 실험적으로 유체전달 소음감소기의 음향 투과손실을 측정하기 위해서 해수연결 배관계의 끝단 반사가 존재하는 경우 배관 내의 음파를 입사파와 투과파로 분리하는 전달함수 기법을 제안하였다. 제작된 소음감소기 시험시편에 대한 이론적 투과손실과 제안된 기법을 통해 측정된 투과손실이 관심 주파수 영역에서 잘 일치함을 확인함으로써 기법의 타당성을 검증하였다.

Moon-Moser 그래프와 완전그래프를 결합한 그래프의 극대독립집합의 개수 (The Number of Maximal Independent sets of the Graph with joining Moon-Moser Graph and Complete Graph)

  • 정성진;이창수
    • 대한산업공학회지
    • /
    • 제20권4호
    • /
    • pp.65-72
    • /
    • 1994
  • An independent set of nodes is a set of nodes no two of which are joined by an edge. An independent set is called maximal if no more nodes can be added to the set without destroying its independence. The greatest number of maximal independent set is the maximum possible number of maximal independent set of a graph. We consider the greatest number of maximal independent set in connected graphs with fixed numbers of edges and nodes. For arbitrary number of nodes with a certain class of number of edges, we present the connected graphs with the greatest number of maximal independent set. For a given class of number of edges, the structure of graphs with the greatest number of maximal independent set is that the two components are completely joined; one consists of disjoint triangles as many as possible and the other is the complete graph with remaining nodes.

  • PDF

발전영역을 갖은 자동형 brushless 충전발전기에 관한 연구 (The study of self excited type brushless charging generator, it has generated region)

  • 오병인
    • 전기의세계
    • /
    • 제18권4호
    • /
    • pp.7-15
    • /
    • 1969
  • In this method the condenser excite winding has the phase angle of 90 electrical degree, with the load winding in stator. The condenser excite wing is connected with the condenser while the load winding is with the full rectifer. Direct and quardrature axis components of rotating field winding are composed, of balanced two phase winding, and each one of them is connected with half wave rectifiers. Initically, small amount of lead current can be induced at the condenser excite winding by residual magnetism of rotor. The induced lead current forces the rotating field winding to be excited by synchronous alternating magnetic field. The speed electromotive force, there for, induced in rotating field winding shall electro magnetize the rotating field pole by rotating half wave rectifiers. In the case of the charging generator directly coupled with engines at the operation of wide range speed, the generated region, such as vehicles, aircraft, ships etc, is occured. In conclusion, we can take the advantage of, omitting of voltage regurator and current limiter for charging load and reducing the consumption of fuel using the generated region which can be devided in to Impossible generated region, Generated region, and suspension generated region.

  • PDF

New Design Approach for Grid-Current-Based Active Damping of LCL Filter Resonance in Grid-Connected Converters

  • Gaafar, Mahmoud A.;Dousoky, Gamal M.;Ahmed, Emad M.;Shoyama, Masahito;Orabi, Mohamed
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1165-1177
    • /
    • 2018
  • This paper investigates the active damping of grid-connected LCL filter resonance using high-pass filter (HPF) of the grid current. An expression for such HPF is derived in terms of the filter components. This expression facilitates a general study of the actively damped filter behavior in the discrete time domain. Limits for the HPF parameters are derived to avoid the excitation of unstable open loop poles since such excitation can reduce both the damping performance and the system robustness. Based on this study, straightforward co-design steps for the active damping loop along with the fundamental current regulator are proposed. A numerical example along with simulation and experimental results are presented to verify the theoretical analyses.