• Title/Summary/Keyword: Connected Car Services

Search Result 29, Processing Time 0.023 seconds

Addressing Big Data solution enabled Connected Vehicle services using Hadoop (Hadoop을 이용한 스마트 자동차 서비스용 빅 데이터 솔루션 개발)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.607-612
    • /
    • 2015
  • As the amount of vehicle's diagnostics data increases, the actors in automotive ecosystem will encounter difficulties to perform a real time analysis in order to simulate or to design new services according to the data gathered from the connected cars. In this paper, we have conducted a study of a Big Data solution that expresses the essential deep analytics to process and analyze vast quantities of vehicles on board diagnostics data generated by cars. Hadoop and its ecosystems have been deployed to process a large data and delivered useful outcomes that may be used by actors in automotive ecosystem to deliver new services to car owners. As the Intelligent transport system is involved to guarantee safety, reduce rate of crash and injured in the accident due to speed, addressing big data solution based on vehicle diagnostics data is upcoming to monitor real time outcome from it and making collection of data from several connected cars, facilitating reliable processing and easier storage of data collected.

Analysis of Intelligent Vehicle Control Methods for CIM at Non-signalized Intersections (비 신호 교차로에서 CIM을 위한 지능형 차량 제어기법 분석)

  • Joo, Hyunjin;Lim, Yujin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2018
  • There are lots of literature about connected car system from industry and academia. The connected car is a smart car integrated with IT technology that is connected to people, vehicles and traffic management systems. It is important to V2I (vehicle to infrastructure) communication which is the connection between the vehicle and the infrastructure. CIM (cooperative intersection management) is a device to manage the communication between vehicle and infrastructure. In this paper, we analyze two intelligent vehicle control methods using CIM at non-signalized intersections. In the first method, a vehicle to pass through intersection needs to reserve a resource of intersection. In the second method, trajectory patterns on pre-planned vehicles are classified to pass through intersection. We analyze case studies of two methods to be implemented by DP(dynamic programming) and ACO(ant colony optimization) algorithms. The methods can be reasonably improved by placing importance on vehicles or controlling speeds of vehicles.

A Development of Semantic Connected Service between Vehicles and Things for IoV (차량 인터넷 기술을 위한 시맨틱 차량-사물 연결 서비스 구현)

  • Ryu, Minwoo;Cha, Siho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.27-33
    • /
    • 2018
  • The recent efforts in academia and industry represent a paradigm shift that will extend the IoT from the home environment so that it is interoperable with the Internet of Vehicles (IoV). IoV is a special kind of IoT. It allows to connect between vehicle and things located in infrastructure. Furthermore, IoV enable to create new intelligent services through collaboration with existing various services such as smart city and connected home. In this paper, we develop a service in order to realize IoV. To this end, we design a novel vehicle service platform which could automatical controlling the IoT device according to drivers' voice. To show practical usability of our proposed platform, we develop a prototype service could be call car-to-thing (C2T). We expect that our proposed platform could eventually contribute to realizing IoV.

Development of CAN network intrusion detection algorithm to prevent external hacking (외부 해킹 방지를 위한 CAN 네트워크 침입 검출 알고리즘 개발)

  • Kim, Hyun-Hee;Shin, Eun Hye;Lee, Kyung-Chang;Hwang, Yeong-Yeun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.177-186
    • /
    • 2017
  • With the latest developments in ICT(Information Communication Technology) technology, research on Intelligent Car, Connected Car that support autonomous driving or services is actively underway. It is true that the number of inputs linked to external connections is likely to be exposed to a malicious intrusion. I studied possible security issues that may occur within the Connected Car. A variety of security issues may arise in the use of CAN, the most typical internal network of vehicles. The data can be encrypted by encrypting the entire data within the CAN network system to resolve the security issues, but can be time-consuming and time-consuming, and can cause the authentication process to be carried out in the event of a certification procedure. To resolve this problem, CAN network system can be used to authenticate nodes in the network to perform a unique authentication of nodes using nodes in the network to authenticate nodes in the nodes and By encoding the ID, identifying the identity of the data, changing the identity of the ID and decryption algorithm, and identifying the cipher and certification techniques of the external invader, the encryption and authentication techniques could be detected by detecting and verifying the external intruder. Add a monitoring node to the CAN network to resolve this. Share a unique ID that can be authenticated using the server that performs the initial certification of nodes within the network and encrypt IDs to secure data. By detecting external invaders, designing encryption and authentication techniques was designed to detect external intrusion and certification techniques, enabling them to detect external intrusions.

Threats Analysis and Mobile Key Recovery for Internet of Things (IoT 환경에서의 보안위협 분석과 모바일 키 복구)

  • Lee, Yunjung;Park, Yongjoon;Kim, Chul Soo;Lee, Bongkyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.918-923
    • /
    • 2016
  • IoT should be considered security risk environments such as various platforms and services including smart devices that can be mounted on household electric appliances, healthcare, car, and heterogeneous networks that are connected to the Internet, cloud services and mobile Apps.. In this paper, we provide analysis of new security threats, caused by open-platform of IoT and sensors via the Internet. Also, we present the key recovery mechanism that is applied to IoT. It results to have compatibility with given research, reduces network overhead, and performs key recovery without depending on key escrow agencies or authorized party.

A Classification of Car-related Mobile Apps: For App Development from a Convergence Perspective (차량용 모바일 앱의 분류: 융복합 관점의 앱 개발을 위해)

  • Zhang, Chao;Wan, Lili;Min, Daihwan
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.77-86
    • /
    • 2017
  • This study selected car-related mobile apps for app developers suffering from low revenue and classified car apps assisting users in driving or managing a car. A total of 697 car apps were classified into eight categories. Most apps are in four categories: car news & information (28%), locating service (23%), car rental service (15%), safe/efficient driving service (12%). The remaining categories are buying & selling, driver's communication, maintenance management, and expenses monitoring. Many apps are simple and too similar in their main functions. Only a few apps are designed to be more comprehensive and have functions in two or more categories. For the practicality of the categorization scheme, this study checked the inter-rater reliability in two tests and got 0.886 and 0.828. The result from this study suggests functions that are not implemented yet or need to be combined. Future research will focus on identifying promising car apps or designing multi-functional car apps.

Priority Based Clustering Algorithm for VANETs (VANET 환경을 위한 우선순위 기반 클러스터링 알고리즘)

  • Kim, In-hwan
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.637-644
    • /
    • 2020
  • VANET (Vehicular Ad Hoc Networks) is a network between vehicles and between vehicles and infrastructure. VANET-specific characteristics such as high mobility, movement limitation, and signal interference by obstacles make it difficult to provide stable VANET services. To solve this problem, this paper proposes a vehicle type-based priority clustering method that improves the existing bus-based clustering. The proposed algorithm constructs a cluster by evaluating the priority, link quality, and connectivity based on the vehicle type, expected communication lifetime, and link degree of neighbor nodes. It tries to simplify the process of selecting a cluster head and increase cluster coverage by utilizing a predetermined priority based on the type of vehicle. The proposed algorithm is expected to become the basis for activating various services by contributing to providing stable services in a connected car environment.

Consumers' Perception of Intelligent Vehicle (지능형 자동차에 대한 소비자의 인식 유형 연구)

  • Kim, Gibum;Lee, Hyejung;Lee, Jungwoo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.405-420
    • /
    • 2018
  • As the intelligent vehicle market continues to develop relevant technologies and services for consumers, it is necessary to understand the characteristics of potential consumers. The purpose of this study is to identify and understand the types of potential consumers of intelligent vehicle using the Q-methodology. A Q-frame was constructed using thirty six statements from intelligent vehicle related literature concerning core technology, technology acceptance and personal consumption value, legal system and policy and social awareness. Q-sorting and in-depth interviews were conducted using thirty nine P-samples snowballed. Analysis produced four types of potential consumers for intelligent vehicle: Smart Car Consumer, Reasonable Consumer, Safety Car Consumer, and Smart Device Consumer. Smart Car Consumer value the vehicle capability of intelligent vehicle as most important while Reasonable Consumer focus upon the economics of intelligent vehicle. Safety Car Consumer recognize the safety of intelligent vehicle as most important while Smart Device Consumer highly value the IT functions provided by intelligent vehicles. Across these four different types of consumers, preventing injuries of intelligent vehicle drivers turned out to be the most common critical factor in assessing intelligent vehicle. Implications for the intelligent vehicle market is discussed at the end with further studies needed.

Neural Network and Cloud Computing for Predicting ECG Waves from PPG Readings

  • Kosasih, David Ishak;Lee, Byung-Gook;Lim, Hyotaek
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

The Intelligent Blockchain for the Protection of Smart Automobile Hacking

  • Kim, Seong-Kyu;Jang, Eun-Sill
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.