• Title/Summary/Keyword: Conjugate gradient

Search Result 252, Processing Time 0.041 seconds

A Numerical Model of PCGM for Mild Slope Equation (완경사 파랑식에 대한 PCGM 수치모형)

  • 서승남;연영진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.2
    • /
    • pp.164-173
    • /
    • 1994
  • A numerical model to solve mild slope equation is developed by use of a preconditioned conjugate gradient method (PCGM). In the present paper. accurate boundary conditions and a better preconditioner are employed which are improved from the existing method of Panchang et al. (1991). Computational procedures are focused on weakly nonlinear waves, and emerged problems to make a more accurate model are discussed. The results of model are tested against laboratory results of both circular and elliptic shoals. Model results of wave amplitude show excellent agreement with laboratory data and thes thus model can be used as a powerful tool to calculate wave transformation in shallow waters with complex bathymetry.

  • PDF

Comparison of PCGM Algorithms for Mild Slope Equation (완경사 파랑식에 대한 PCGM 연산방식 비교)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.2
    • /
    • pp.186-195
    • /
    • 1994
  • In order to make an accurate and fast numerical method based on Preconditioned Conjugate Gradient Method(PCGM), several methods are presented including the exising method such as Bayliss or at. (1983) or Panchang et al. (1991). The results of the methods are compared with the analytical linear solution of plane waves over a constant depth. After advantages and disadvanteges of the methods are discussed. both accuracy and convergence of them are analyzed. The method developed in the paper is proved. by means of tests. to be the best method to solve the mild slope equation numerically.

  • PDF

Assessment of Optimization Methods for Design of Axial-Flow Fan (축류송풍기 설계를 위한 최적설계기법의 평가)

  • Choi, Jae-Ho;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.221-226
    • /
    • 1999
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, Incompressible, three-dimensional Reynolds-averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Sweep angle distributions are used as design variables.

  • PDF

Aggregation multigrid method for schur complement system in FE analysis of continuum elements

  • Ko, Jin-Hwan;Lee, Byung Chai
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.467-480
    • /
    • 2008
  • An aggregation multigrid method (AMM) is a leading iterative solver in solid mechanics. Recently, AMM is applied for solving Schur Complement system in the FE analysis of shell structures. In this work, an extended application of AMM for solving Schur Complement system in the FE analysis of continuum elements is presented. Further, the performance of the proposed AMM in multiple load cases, which is a challenging problem for an iterative solver, is studied. The proposed method is developed by combining the substructuring and the multigrid methods. The substructuring method avoids factorizing the full-size matrix of an original system and the multigrid method gives near-optimal convergence. This method is demonstrated for the FE analysis of several elastostatic problems. The numerical results show better performance by the proposed method as compared to the preconditioned conjugate gradient method. The smaller computational cost for the iterative procedure of the proposed method gives a good alternative to a direct solver in large systems with multiple load cases.

Elliptic Numerical Wave Model Solving Modified Mild Slope Equation (수정완경사방정식의 타원형 수치모형)

  • YOON JONG-TAE
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.40-45
    • /
    • 2004
  • An efficient numerical model of the modified mild slope equation, based on the robust iterative method is presented. The model developed is verified against other numerical experimental results, related to wave reflection from an arc-shaped bar and wave transformation over a circular shoal. The results show that the modified mild slope equation model is capable of producing accurate results for wave propagation in a region where water depth varies substantially, while the conventional mild slope equation model yeilds large errors, as the mild slope assumption is violated.

On-Line Calculation of the Critical Point of Voltage Collapse Based on Multiple Load Flow Solutions (다중조류계산을 이용한 전압붕괴 임계점의 On-Line 계산)

  • Nam, Hae-Kon;Kim, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.134-136
    • /
    • 1993
  • This paper presents a novel and efficient method to calculate the critical point of voltage collapse. Conjugate gradient and modified Newton-Raphson methods are employed to calculate two pairs of multiple load flow solutions for two operating conditions, i.e., both +mode and -mode voltages for two loading conditions respectively. Then these four voltage magnitude-load data sets of the bus which is most susceptible to voltage collapse, are fitted to third order polynomial using Lagrangian interpolation in order to represent approximate nose curve (P-V curve). This nose curve locates first estimate of the critical point of voltage collapse. The procedure described above is repeated near the critical point and the new estimate will be very close to the critical point. The proposed method is tested for the eleven bus Klos-Kerner system, with good accuracy and fast computation time.

  • PDF

Slot optimization of cage rotor for Inverter-fed 3-phase Induction Motor (인버터 구동 유도전동기의 회전자 슬롯형상 최적화)

  • Kim, Byung-Taek;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.250-252
    • /
    • 2000
  • A simple analysis method for inverter-fed induction motor using F.E.M and equivalent circuit is proposed. And an optimum shape of rotor slot for 2Hp inverter-fed induction motor is determined by combining the proposed analysis method and an optimization algorithm. Conjugate gradient method is used for the optimization algorithm. The optimization is performed for higher efficiency and reduction of harmonic loss in the inverter-fed induction motor. The optimization results are verified by comparing with those of the time-step F.E.A and the experiment.

  • PDF

Numerical Optimization Applied to Estimate the Composition of Nonlinear Electric Loads (비선형 전기부하구성 예측을 위한 최적화 기법 비교 평가)

  • Lee, Soon;Park, Jung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.576-577
    • /
    • 2007
  • 본 논문은 전력시스템 수용가를 구성하는 비선형 부하에 흐르는 왜곡된 파형을 가진 전류의 상대적 비율을 결정하여 비선형 전기부하구성을 예측하기 위한 연구이다. 본 논문에서는 수용가 전기부하 구성 예측을 위한 해결 절차로써 수용가의 수리적 모델링을 통한 시스템 방정식을 도출하였고 최적화 이론을 적용하였다. 또한, 본 시스템에 적용한 최적화 알고리즘으로 steepest descent, conjugate gradient, Broydon-Fletcher-Goldfarb-Shanno (BFGS) 기법을 사용하였고, 예측된 결과들의 성능을 나타내는 지표인 수렴 속도와 정확도 비교를 통하여 분산 전력시스템의 전기부하구성 예측을 위해 BFGS 기법을 적용하는 것이 가장 효율적인 방안임을 보였다.

  • PDF

Inverse Boundary Temperature Estimation in a Two-Dimensional Cylindrical Enclosure Using Automatic Differentiation and Broyden Combined Method (자동미분법과 Broyden 혼합법을 이용한 2차원 원통형상에서의 경계온도 역추정)

  • Kim Ki-Wan;Kim Dong-Min;Baek Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.270-277
    • /
    • 2006
  • Inverse radiation problems were solved for estimating boundary temperature distribution in a way of function estimation approach in an axisymmetric absorbing, emitting and scattering medium, given the measured radiative data. In order to reduce the computational time fur the calculation of sensitivity matrix, automatic differentiation and Broyden combined method were adopted, and their computational precision and efficiency were compared with the result obtained by finite difference approximation.. In inverse analysis, the effects of the precision of sensitivity matrix, the number of measurement points and measurement error on the estimation accuracy had been inspected using quasi-Newton method as an inverse method. Inverse solutions were validated with the result acquired by additional inverse methods of conjugate-gradient method or Levenberg-Marquardt method.

Optimum Approximation of Linear Time - Invariant Systems by Low - Order Models

  • 김상봉
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.71-78
    • /
    • 1983
  • A method is given for obtaining low-order models for a linear time-invariant system of high-order by minimizing a functional of the reduction error between the output response of the original system and the low-order model. The method is based on the Astrom's algorithm for the evaluation of complex integrals and the conjugate gradient method of Fletcher-Reeves. An example illustrating the application of this method is given for approximation of a 4-th order system to be used in the load frequency control of generator systems.

  • PDF