• 제목/요약/키워드: Conical shell

검색결과 90건 처리시간 0.025초

유한요소법을 이용한 축대칭 구조물의 비선형 거동해석 (Analyses of Non-linear Behavior of Axisymmetric Structure by Finite Element Method)

  • 구영덕;민경탁
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.139-148
    • /
    • 1997
  • A finite element method is programmed to analyse the nonlinear behavior of axisymmetric structures. The lst order Mindlin shell theory which takes into account the transversal shear deformation is used to formulate a conical two node element with six degrees of freedom. To evade the shear locking phenomenon which arises in Mindlin type element when the effect of shear deformation tends to zero, the reduced integration of one point Gauss Quadrature at the center of element is employed. This method is the Updated Lagrangian formulation which refers the variables to the state of the most recent iteration. The solution is searched by Newton-Raphson iteration method. The tangent matrix of this method is obtained by a finite difference method by perturbating the degrees of freedom with small values. For the moment this program is limited to the analyses of non-linear elastic problems. For structures which could have elastic stability problem, the calculation is controled by displacement.

  • PDF

Effect of varying the size of flatbar stiffeners on the buckling behaviour of thin cylinders on local supports

  • Vanlaere, Wesley;Impe, Rudy Van;Lagae, Guy;Maes, Thomas
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.217-230
    • /
    • 2005
  • A steel silo traditionally consists of a cylindrical and a conical shell. In order to facilitate emptying operations, the cylinder is placed on local supports. This may lead to dangerous stress concentrations and eventually to local instability of the cylindrical wall. In this contribution, the locally supported cylinder is strengthened by means of ring stiffeners and longitudinal stiffeners and the effect of their dimensions on the buckling stress is investigated. This study leads to a number of diagrams, each of them representing the effect of one of the dimensions on the buckling stress. In each diagram, the failure pattern corresponding to the buckling stress is indicated.

Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping

  • Azizi, A.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.771-791
    • /
    • 2018
  • This paper deals with the low velocity impact response and dynamic stresses of composite sandwich truncated conical shells (STCS) with compressible or incompressible core. Impacts are assumed to occur normally over the top face-sheet and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The displacement fields of core and face sheets are considered by higher order and first order shear deformation theory (FSDT), respectively. Considering continuity boundary conditions between the layers, the motion equations are derived based on Hamilton's principal incorporating the curvature, in-plane stress of the core and the structural damping effects based on Kelvin-Voigt model. In order to obtain the contact force, the displacement histories and the dynamic stresses, the differential quadrature method (DQM) is used. The effects of different parameters such as number of the layers of the face sheets, boundary conditions, semi vertex angle of the cone, impact velocity of impactor, trapezoidal shape and in-plane stresses of the core are examined on the low velocity impact response of STCS. Comparison of the present results with those reported by other researchers, confirms the accuracy of the present method. Numerical results show that increasing the impact velocity of the impactor yields to increases in the maximum contact force and deflection, while the contact duration is decreased. In addition, the normal stresses induced in top layer are higher than bottom layer since the top layer is subjected to impact load. Furthermore, with considering structural damping, the contact force and dynamic deflection decrees.

A Comparison of Egg Quality of Pheasant, Chukar, Quail and Guinea Fowl

  • Song, K.T.;Choi, S.H.;Oh, H.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권7호
    • /
    • pp.986-990
    • /
    • 2000
  • The quality characteristics and proximate composition of the eggs of pheasant, chukar, quail, and guinea fowl were compared. Eggs of the 4 species had a similar ovalish conical shape with blunt and pointed ends, showing the shape indices of 77.30-79.63 with no statistical difference. Egg weight was heaviest in guinea fowl (46.65 g), followed by pheasant (25.79 g), chukar (19.16 g) and quail (10.34 g). Proportion of yolk to the total egg weight was highest in pheasant (35.7%), followed by chukar (33.9%), quail (31.4%) and guinea fowl (30.6%). Albumen content was highest in quail showing 61.2%, while pheasant, chukar and guinea fowl were in the range of 55.6~57.4%. The ratio of yolk to albumen (Y/A) was highest in pheasant (0.65), followed by chukar (0.60), guinea fowl (0.55) and quail (0.52). The portion of shell to the total egg weight was highest in guinea fowl (13.5%) and lowest in quail (7.3%). The shell thickness of the eggs was thickest in guinea fowl ($462.8{{\mu}m}$), followed by pheasant ($241.5{{\mu}m}$), chukar ($231.8{{\mu}m}$) and quail ($174.8{{\mu}m}$). The contents of moisture, crude protein, crude fat and crude ash of whole egg were in the ranges of 74.26-74.50%, 11.98-12.77%, 10.83-11.91% and 1.02-1.10%, respectively, with no statistical difference (p>0.05) among the species. Albumen was high in moisture (87.46-87.99%) and very low in crude fat (0.09-0.13%), which was quite different from yolk. Yolk showed relatively low level of moisture (49.71-50.42%) and high levels of fat (31.48-32.32%), crude protein (15.12-15.99%) and crude ash (1.53-1.86%). No species difference in the proximate compositions of albumen and yolk was found except in crude ash content of albumen.

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

상하향식 설계법을 이용한 자동차 배기시스템의 설계 (Design of Automobile Exhaust System using a Top-Down Approach Design Methodology)

  • 고병갑;박경진
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.13-27
    • /
    • 1997
  • In the modern design technology, a component should be designed to fit into the overall system performance. A design methodology is developed to expedite the mechan- ical design of complex mechanical systems, The relation between the system design and component design is defined by a top-down approach and the results from the system design are utilized in the component design process. As a design example, an automobile exhaust system is selected for the system design and a bellows is chosen for a component design. Design methodology based on the top-down approach consists of five steps; (1) Analysis of service load, (2) Development of a lumped parameter, (3) Completion of the system design, (4) Selection of the component topology, (5) Completion of the component design, A method using a equivalent matrix is developed in order to determine unknown external forces in linear structural analyses. The bellows is also analyzed by the finite element method using a conical frustum shell element. Various experiments are performed to verify the developed theories. The top-down desi- gn approach is demonstrated by a design case using structural and shape optimization technology. Since the method is relatively simple and easy compared to other methods, it can be applied to the general design where system and component designs are involves simultaneously.

  • PDF

변두께를 갖는 두꺼운 반구형 쉘과 반구헝체의 3차원적 진동해석 (Three-Dimensional Vibration Analysis of Solid and Hollow Hemispheres Having Varying Thickness)

  • 심현주;장경호;강재훈
    • 한국전산구조공학회논문집
    • /
    • 제16권2호
    • /
    • pp.197-206
    • /
    • 2003
  • 임의의 경계조건과 변두께를 갖는 축대칭 반구형 쉘과 반구형체의 진동수와 모우드형상을 결정하는 3차원적 해석법이 소개되었다. 수학적으로 2차원적인 전통적인 쉘이론과는 달리 본 연구의 해석법은 3차원 동적 탄성방정식을 사용하였다 자오선방향 (Φ), 법선방향(z), 원주방향(θ)으로의 변위성분인 μ/sub Φ/, μ/sub z/, μ/sub θ/는 시간에 대해서는 정현적으로, θ에 대해서는 주기적으로, 와 z 방향에 대해서는 대수다항식으로 표현될 수 있다. 축대칭 반구형 쉘의 변형률 에너지와 운동 에너지를 정식화하고, 리츠법으로 고유치문제를 계산하였다. 진동수의 최소화과정을 통해 엄밀해의 상위 경계치 진동수를 구하였으며, 이 때, 다항식의 차수를 증가시키면 진동수는 엄밀해에 수렴하게 된다. 자오선방향으로 선형적으로 꿩 두께가 변하는 반구형 쉘과 반구형체치 3차원적 진동수를 최초로 계산하였으며, 축방향으로 난 조그만 원추형 구멍이 진동수에 미치는 영향도 분석하였다. 상두께와 자유경계조건을 갖는 두꺼운 축대칭 반구형 쉘에 대한 3차원적 리츠해와 3차원적 유한요소법에 의한 진동수를 서로 비교하였다.

분사층 반응기의 원뿔각에 따른 Jatropha Curcas L. Seed Cake의 급속열분해 특성 (Fast Pyrolysis Characteristics of Jatropha Curcas L. Seed Cake with Respect to Cone Angle of Spouted Bed Reactor)

  • 박훈채;이병규;김효성;최항석
    • 청정기술
    • /
    • 제25권2호
    • /
    • pp.161-167
    • /
    • 2019
  • 바이오매스의 급속열분해를 위하여 지난 수십 년간 다양한 형태의 반응기가 개발되었다. 급속열분해 공정의 반응기는 유동층 반응기가 많이 사용되어 왔으며, 최근에는 분사층 반응기를 이용한 바이오매스의 급속열분해 특성에 대한 연구가 다수의 연구자들에 의해 수행되고 있다. 분사층 반응기의 유동화 특성은 입자의 물리적 특성, 유체 제트의 속도, core와 annulus의 구조에 영향을 받으며, 반응기의 기하학적 구조는 분사층 내부의 core와 annulus 구조를 결정하는 주요 인자이다. 따라서 분사층 반응기의 최적설계를 위해서는 열분해 반응에 영향을 주는 인자에 대한 바이오매스의 급속열분해 특성에 대한 연구가 수행되어야 한다. 하지만 분사층 반응기의 기하학적 구조에 의한 바이오매스의 급속열분해 특성은 자세히 연구되지 않았다. 본 연구에서는 분사층 반응기의 원뿔각과 반응 온도 변화에 따른 Jatropha curcas L. seed shell cake의 급속열분해 실험을 수행하여 분사층 반응기의 최적 형상과 반응 온도를 도출하였다. 실험결과, 열분해 오일의 에너지 수율은 반응 온도 $450^{\circ}C$, 분사층 반응기의 원뿔각 $44^{\circ}$에서 63.9%로 가장 높게 나타났다. 그리고 분사층 반응기 내 고체입자의 열전달과 기체상 열분해 생성물의 체류시간은 원뿔각의 영향을 받아 열분해 생성물의 수율 및 열분해 오일의 품질에 영향을 주는 것으로 나타났다.

Predicting ESP and HNT effects on the mechanical properties of eco-friendly composites subjected to micro-indentation test

  • Saeed Kamarian;Ali Khalvandi;Thanh Mai Nguyen Tran;Reza Barbaz-Isfahani;Saeed Saber-Samandari;Jung-Il Song
    • Advances in nano research
    • /
    • 제15권4호
    • /
    • pp.315-328
    • /
    • 2023
  • The main goal of the present study was to assess the effects of eggshell powder (ESP) and halloysite nanotubes (HNTs) on the mechanical properties of abaca fiber (AF)-reinforced natural composites. For this purpose, a limited number of indentation tests were first performed on the AF/polypropylene (PP) composites for different HNT and ESP loadings (0 wt.% ~ 6 wt.%), load amplitudes (150, 200, and 250 N), and two types of indenters (Vickers or conical). The Young's modulus, hardness and plasticity index of each specimen were calculated using the indentation test results and Oliver-Pharr method. The accuracy of the experimental results was confirmed by comparing the values of the Young's modulus obtained from the indentation test with the results of the conventional tensile test. Then, a feed-forward shallow artificial neural network (ANN) with high efficiency was trained based on the obtained experimental data. The trained ANN could properly predict the variations of the mentioned mechanical properties of AF/PP composites incorporated with different HNT and ESP loadings. Furthermore, the trained ANN demonstrated that HNTs increase the elastic modulus and hardness of the composite, while the incorporation of ESP reduces these properties. For instance, the Young's modulus of composites incorporated with 3 wt.% of ESP decreased by 30.7% compared with the pure composite, while increasing the weight fraction of ESP up to 6% decreased the Young's modulus by 34.8%. Moreover, the trained ANN indicated that HNTs have a more significant effect on reducing the plasticity index than ESP.

민들조개 (Gomphina melanaegis)의 생식소 발달과 생식주기 (Gonadal Development and Reproductive Cycle of Gomphina melanaegis (Bivalvia; Veneridae))

  • 이정용;박영제;장영진
    • 한국수산과학회지
    • /
    • 제32권2호
    • /
    • pp.198-203
    • /
    • 1999
  • 1996년 4월부터 1997년 4월까지 강원도 주문진 연안에서 채집한 민들조개 (Gomphina melanaegis)의 생식소 발달과정과 생식주기를 조사하였다. 민들조개는 자웅이체로서, 생식소는 소화맹낭과 족부 근육 사이에 위치하였으며, 난소와 정소는 각각 수많은 난소소낭과 정소세관으로 이루어져 있었다. 육중량비는 1994년 8월에 $23.0\%$로 가장 높았으나 9월에 $19.8\%$로 급격히 감소하였으며, 이후 이듬해 3월에 가장 낮은 값을 보인 후 다시 증가하였다. 성숙기의 난모세포 크기는 $50\~60\mu$m로 전자밀도가 높은 인을 가진 핵이 이중의 단위막으로 둘러싸여 있으며 세포질에는 다량의 난황과립과 지방과립 및 미토콘드리아가 분포하였다. 민들조개의 정자는 머리, 중편 및 꼬리로 구성되어 있었다. 치밀한 핵질로 충만한 원추형 머리는 그 선단에 첨체구조를 가지고 있으며, 중편부에는 4개의 미토콘드리아와 원단중심소체가 편모와 연결되어 있었다. 꼬리의 편모는 전형적인 9+2 구조를 나타냈다. 암수의 성비는 1 : 0.79였고, 생물학적 최소형은 각장 25.0 mm였다. 생식주기는 분열증식기 (12$\~$3월), 성장기 (4$\~$5월), 성숙기 (6월), 산란기 (7$\~$8월) 및 휴지기 (9$\~$11월)의 연속적인 5단계로 구분되었다.

  • PDF