• Title/Summary/Keyword: Conical Flow

Search Result 117, Processing Time 0.021 seconds

Flow-Feedback for Pressure Fluctuation Mitigation and Pressure Recovery Improvement in a Conical Diffuser with Swirl

  • Tanasa, Constantin;Bosioc, Alin;Susan-Resiga, Romeo;Muntean, Sebastian
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.47-56
    • /
    • 2011
  • Our previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water jet injection along the symmetry axis mitigates the pressure fluctuations associated with the precessing vortex rope. However, for swirling flows similar to Francis turbines operated at partial discharge, the jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, we introduce the flow-feedback approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser. Experimental investigations on mitigating the pressure fluctuations generated by the precessing vortex rope and investigations of pressure recovery coefficient on the cone wall with and without flow-feedback method are presented.

Numerical Analysis for the Pressure and Flow Fields past a Two-Staged Conical Orifice (이단 원추형 오리피스를 지나는 압력장과 유동장에 관한 수치적 연구)

  • Kim, Yeon-Su;Kim, Yu-Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.278-287
    • /
    • 2002
  • The objective of the paper was to calculate the pressure drop and to investigate the recirculation region of the conical orifices used in Kwang-yang Iron & Steel Company. The flow field with water used as a working fluid was the turbulent flow for Reynolds number of 2$\times$10$^4$. The effective parameters fur the pressure drop and the recirculation region were the conical orifice\`s inclined angle ($\theta$) against the wall, the interval(S) between orifices, the relative angle of rotation($\alpha$) of the orifices, the shape of the orifice's hole(circle, rectangle, triangle) having the same area, the number(N) of the orifice's holes having the same mass flow rate, and the thickness(t) of the orifices. It was fecund that the shape of the orifice's hole, the number of the orifice's holes and the thickness of the orifice affected the total pressure drop a lot and that the conical orifice's inclined angle against the wall, the relative angle of rotation of the orifices, the number of the orifice's holes and the thickness of the orifices affected the center location of the recirculation region. The PISO algorithm with FLUENT code was employed to analyze the flow field.

Development and Calibration of a Seven-Hole Pressure Probe (7공 압력프로브의 교정 및 개발)

  • Yang, Jae-Hun;Chang, Jo-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • The present study was carried out in order to develope a seven-hole pressure probe which is able to measure high flow angles. The seven-hole pressure probe is a non-nulling, directional velocity probe used for measuring three dimensional flow that having high flow angles. A 4 mm diameter seven-hole conical pressure probe was manufactured with a cone angle of 70$^{\circ}$. The probe was comprised of seven 1 mm diameter stainless steel tubes packed close together and fitted into an outer stainless steel sleeve. The calibration procedure is based on the use of the Callington's polynomial curve-fit method. The validity of the seven-hole conical pressure probe is demonstrated by comparisons with hot-wire data.

  • PDF

NUMERICAL SIMULATION ON A VOLUTE OF STRAIGHT CONICAL DUCT TYPE BY MULTI-BLOCK GRID (다중 블록 격자를 이용한 원뿔 직관 모양의 벌류트 유동의 수치해석)

  • Bae, H.;Kang, H.G.;Yoon, J.S.;Park, K.C.;Chang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.1-7
    • /
    • 2006
  • Numerical investigation of a centrifugal compressor volute having a modified straight conical duct hill been made. Three-dimensional Reynolds-Averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence equation are solved To avoid coordinate singularity at the central axis of the duct, multi-block H-type grid is generated on the circular cross-sections of the volute and stretched toward the solid wall boundary. We obtained numerical results with three different mass flow rates at the volute inlet, namely, with the inlet conditions that give small, medium and large mass flow rates at the outlet of the conical duct. Agreement with the experimental results is observed.

Free molecule transmission probability of a conical tube with wall sorption

  • 인상렬
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • The uniform distributed pumping model is used to derive analytic expressions of the pressure profile for the molecular flow regime in linearly tapered or flared(conical or pyramidal) tubes with wall sorption. The concept of transmission conductance for sticky tubes of arbitrary shape is newly introduced to calculate the transmission probability using the pressure profile. The transmission probability obtained analytically for a conical sticky tube is compared with that from the Monte Carlo simulation.

PIV measurement of roof corner vortices

  • Kim, Kyung Chun;Ji, Ho Seong;Seong, Seung Hak
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.441-454
    • /
    • 2001
  • Conical vortices on roof corners of a prismatic low-rise building have been investigated by using the PIV(Particle Image Velocimetry) technique. The Reynolds number based on the free stream velocity and model height was $5.3{\times}10^3$. Mean and instantaneous vector fields for velocity, vorticity, and turbulent kinetic energy were measured at two vertical planes and for two different flow angles of $30^{\circ}$ and $45^{\circ}$. The measurements provided a clear view of the complex flow structures on roof corners such as a pair of counter rotating conical vortices, secondary vortices, and tertiary vortices. They also enabled accurate and easy measurement of the size of vortices. Additionally, we could easily locate the centers of the vortices from the ensemble averaged velocity fields. It was observed that the flow angle of a $30^{\circ}$ produces a higher level of vorticity and turbulent kinetic energy in one of the pair of vortices than does the $45^{\circ}$ flow angle.

Numerical Study on Turbulent Flow in a Conical Diffuser (원추형 디퓨져 내의 난류운동에 관한 수치해석적 연구)

  • 강신형;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1971-1978
    • /
    • 1992
  • A turbulent flow in a conical diffuser with total divergence angle of 8.deg. was numerically studied. The low Reynolds number k-.epsilon. model(Launder-Sharma model) was adopted to simulate the turbulence. The continuity and time averaged Navier-Stokes equations in a nonorthogonal coordinate system were solved by a finite volume method based on the fully elliptic formulation. The low Reynolds number k-.epsilon. model reasonably simulates the pressure recovery and the mean velocity components. However, there are also considerable discrepancies between predicted and measured shear stress distribution on the wall and turbulent kinetic energy distributions. It is necessary to investigate the flow structure at the entry of the diffuser, numerically as well as experimentally.

The characteristics of static pressure recovery in a conical diffuser with a swirling flow (선회류 유입에 대한 원추디퓨저의 정압회복 특성)

  • Jeong, Hyo-Min;Jeong, Han-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.937-945
    • /
    • 1998
  • The purpose of this paper is to investigate the relationship between pressure recovery and turbulent characteristic value of velocity and pressure, in the case where a swirling flow streams into a conical diffuser. The results of both measurements of the wall pressure fluctuation and velocity fluctuation revealed them to role the large part of the total pressure loss of the flow. The cause of the fluctuation of flow was showed to be the flow separation at the inlet of diffuser at low intensity of swirl, but the flow of diffuser center was instable at high intensity of swirl. The static pressure recovery depends strongly on the magnitude of the turbulent energy in the diffuser, and that this magnitude of the turbulent energy varies as the intensity of swirl at the diffuser inlet.

Numerical Study on the Three-Dimensional Centrifugal Compressor Volute Flow (원심 압축기 벌류트 3차원 유동의 수치해석)

  • Yoon Ju-Sig;Park Ki-Cheol;Chang Keun-Shik;Bae Hwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.222-229
    • /
    • 2006
  • Three dimensional turbulent flow in the scroll volute of centrifugal compressor has been numerically investigated in this paper by solving the Navier-Stokes equations and $\kappa-\varepsilon$ equation model. The computational grid for the flow field of the scroll volute has been constructed based on the multi-block grid concept, which is good to avoid the central grid singularity as well as to promote grid stretching toward the volute wall. Numerical result has been obtained for both the two- and three- dimensions. For the latter flow, result of the scroll volute flow is compared with that of the straight conical volute. This comparison has sorted out the characteristic features of the three-dimensional scroll-type volute flow of centrifugal compressor.

A model of roof-top surface pressures produced by conical vortices : Evaluation and implications

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.279-298
    • /
    • 2001
  • The greatest suction on the cladding of flat roof low-rise buildings is known to occur beneath the conical vortices that form along the roof edges for cornering winds. In a companion paper, a model of the vortex flow mechanism has been developed which can be used to connect the surface pressure beneath the vortex to adjacent flow conditions. The flow model is experimentally validated in this paper using simultaneous velocity and surface pressure measurement on a 1 : 50 model of the Texas Tech University experimental building in a wind tunnel simulated atmospheric boundary layer. Flow visualization gives further insight into the nature of peak suction events. The flow model is shown to account for the increase in suction towards the roof corner as well as the presence of the highest suction at wind angles of $60^{\circ}$. It includes a parameter describing vortex suction strength, which is shown to be related to the nature of the reattachment, and also suggests how different components of upstream turbulence could influence the surface pressure.