• 제목/요약/키워드: Conical Angle

검색결과 133건 처리시간 0.027초

CAUSE OF TECHNICAL FAILURES OF CONICAL CROWN-RETAINED DENTURE (CCRD): A CLINICAL REPORT

  • Yi Yang-Jin;Cho Lee-Ra;Park Chan-Jin
    • 대한치과보철학회지
    • /
    • 제41권6호
    • /
    • pp.714-719
    • /
    • 2003
  • Conical crown-retained denture (CCRD) has been used as a very effective treatment method in cases with few remaining teeth with heterogeneous prognosis. However, in spite of many advantages of CCRD, high technical failure rate was a problem to be considered. Incorrect path of insertion and excessive retention were thought to be the main cause of technical failure and to result from laboratory procedure with a coping misfit and/or a coping transfer error. In order to prevent this error, secure anchoring of inner coping and re-examination and milling of convergence angle were recommended on the master model from pick-up impression.

A model of roof-top surface pressures produced by conical vortices : Model development

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • 제4권3호
    • /
    • pp.227-246
    • /
    • 2001
  • The objective of this study is to understand the flow above the front edge of low-rise building roofs. The greatest suction on the building is known to occur at this location as a result of the formation of conical vortices in the separated flow zone. It is expected that the relationship between this suction and upstream flow conditions can be better understood through the analysis of the vortex flow mechanism. Experimental measurements were used, along with predictions from numerical simulations of delta wing vortex flows, to develop a model of the pressure field within and beneath the conical vortex. The model accounts for the change in vortex suction with wind angle, and includes a parameter indicating the strength of the vortex. The model can be applied to both mean and time dependent surface pressures, and is validated in a companion paper.

Combined resonance of axially moving truncated conical shells in hygro-thermal environment

  • Zhong-Shi Ma;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • 제91권3호
    • /
    • pp.291-300
    • /
    • 2024
  • This paper predicts the combined resonance behavior of the truncated conical shells (TCSs) under transverse and parametric coupled excitation. The motion governing equation is formulated in the framework of high-order shear deformation theory, von Kármán theory and Hamilton principle. The displacements and boundary conditions are characterized by a set of displacement shape functions with double Fourier series. Subsequently, the method of varying amplitude (MVA) is utilized to derive the approximate analytical solution of system response of TCSs. A comparative analysis is conducted to verify the accuracy of the current computational method. Additionally, the interaction mechanism of combined resonance, parametric resonance and primary resonance is examined. And the effect of damping coefficient, the external excitation, initial phase, axial motion speed, temperature variation, humidity variation, material properties and semi-vortex angle on the vibration mechanism are analyzed.

Al5052-O 판재의 최적 점진성형 연구 (Optimization of Single Point Incremental Forming of Al5052-O Sheet)

  • 김찬일;샤오샤오;도반크옹;김영석
    • 대한기계학회논문집A
    • /
    • 제41권3호
    • /
    • pp.181-186
    • /
    • 2017
  • 점진 판재 성형은 금형을 제작하지 않고 판재를 가공하는 방법으로써 빠른 시제품 제작과 소량 생산에 적합한 성형법이다. 이러한 점진 판재 성형의 공정 변수로 공구 직경, 매 스탭당 z-방향 깊이, 공구 이송속도, 공구 회전 속도 등은 성형품의 품질에 크게 영향을 미친다. 본 연구에서는 Al5052-O(0.8mm) 판재를 사용하여 Varying Wall Angle Conical Frustum 모델의 점진성형을 실시하였으며, 각각의 변수들의 조합에서 성형성을 판단하였다. 다구찌 기법을 사용하여 점진성형 변수들의 조합을 찾아내고, 그레이 관계형 최적화를 통하여 최적 성형 변수 값의 조합을 찾아 내였다. 최종 성형물의 품질은 성형성, 스프링 백, 두께 감소량을 측정하여 판단하였다. 본 연구의 실험 조건에서의 최적의 변수 조합은 공구직경 6 mm, 회전속도 60rpm, 매 스탭당 z-방향 깊이 0.3 mm, 이송속도 500 mm/min으로 판단되었다.

원뿔 캐비테이터의 항력에 대한 수치해석 (Numerical Analysis of the Drag of Conical Cavitators)

  • 김형태;이현배;최정규
    • 대한조선학회논문집
    • /
    • 제52권4호
    • /
    • pp.305-314
    • /
    • 2015
  • In this paper, a numerical analysis is carried out to study the drag of conical cavitators, supercavity generation devices for the high-speed underwater vehicle. The realizable k-∊ turbulence model and the Schnerr-Sauer cavitation model are applied to calculate steady-state supercavitating flows around cones of various cone angles. The calculated drags of the cones are decomposed of the pressure and the friction parts and their dependency on the geometry and the flow conditions have been analyzed. It is confirmed that the pressure drag coefficients of the cones can be estimated by a simple function of both the cone angle and the cavitation number while the friction drag coefficients approximately by well-known empirical formulas, e.g., Schults-Grunow's for the drag of the flat plate. Finally a practical method for estimating the total drags of supercavitating cones is suggested, which can be useful consequently for the design of conical cavitaors.

Conceptual Study of Brain Dedicated PET Improving Sensitivity

  • Shin, Han-Back;Choi, Yong;Huh, Yoonsuk;Jung, Jin Ho;Suh, Tae Suk
    • 한국의학물리학회지:의학물리
    • /
    • 제27권4호
    • /
    • pp.236-240
    • /
    • 2016
  • The purpose of this study is to propose a novel high sensitivity neuro-PET design. The improvement of sensitivity in neuro-PET is important because it can reduce scan time and/or radiation dose. In this study, we proposed a novel PET detector design that combined conical shape detector with cylindrical one to obtain high sensitivity. The sensitivity as a function of the oblique angle and the ratio of the conical to cylindrical portion was estimated to optimize the design of brain PET using Monte Carlo simulation tool, GATE. An axial sensitivity and misplacement rate by penetration of ${\gamma}$ rays were also estimated to evaluate the performance of the proposed PET. The sensitivity was improved by 36% at the center of axial FOV. This value was similar to the calculated value. The misplacement rate of conical shaped PET was about 5% higher than the conventional PET. The results of this study demonstrated the conical detector proposed in this study could provide subsequent improvement in sensitivity which could allow to design high sensitivity PET for brain imaging.

Vibrational characteristic of FG porous conical shells using Donnell's shell theory

  • Yan, Kai;Zhang, Yao;Cai, Hao;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.249-260
    • /
    • 2020
  • The main purpose of this research work is to investigate the free vibration of conical shell structures reinforced by graphene platelets (GPLs) and the elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. To this end, a shell model is developed based on Donnell's theory. To solve the problem, the analytical Galerkin method is employed together with beam mode shapes as weighting functions. Due to importance of boundary conditions upon mechanical behavior of nanostructures, the analysis is carried out for different boundary conditions. The effects of boundary conditions, semi vertex angle, porosity distribution and graphene platelets on the response of conical shell structures are explored. The correctness of the obtained results is checked via comparing with existing data in the literature and good agreement is eventuated. The effectiveness and the accuracy of the present approach have been demonstrated and it is shown that the Donnell's shell theory is efficient, robust and accurate in terms of nanocomposite problems.

A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment

  • Hajmohammad, Mohammad Hadi;Zarei, Mohammad Sharif;Farrokhian, Ahmad;Kolahchi, Reza
    • Advances in nano research
    • /
    • 제6권4호
    • /
    • pp.299-321
    • /
    • 2018
  • A layerwise shear deformation theory is applied in this paper for buckling analysis of piezoelectric truncated conical shell. The core is a multiphase nanocomposite reinforced by carbon nanotubes (CNTs) and carbon fibers. The top and bottom face sheets are piezoelectric subjected to 3D electric field and external voltage. The Halpin-Tsai model is used for obtaining the effective moisture and temperature dependent material properties of the core. The proposed layerwise theory is based on Mindlin's first-order shear deformation theory in each layer and results for a laminated truncated conical shell with three layers considering the continuity boundary condition. Applying energy method, the coupled motion equations are derived and analyzed using differential quadrature method (DQM) for different boundary conditions. The influences of some parameters such as boundary conditions, CNTs weight percent, cone semi vertex angle, geometrical parameters, moisture and temperature changes and external voltage are investigated on the buckling load of the smart structure. The results show that enhancing the CNTs weight percent, the buckling load increases. Furthermore, increasing the moisture and temperature changes decreases the buckling load.

유한요소해석을 이용한 원뿔형 대응체 방호 효과 분석 (Analysis of Protection Capability of a Conical Shaped Protector)

  • 김희철;김종봉;정진환;유요한
    • 한국군사과학기술학회지
    • /
    • 제21권5호
    • /
    • pp.563-571
    • /
    • 2018
  • In order to effectively protect a penetrator, the conically shaped protector was proposed and the protection capability was investigated. The collision and penetration of the penetrator with the protector were analyzed using dynamic finite element analysis. The post impact behaviors of the penetrator, i.e., flying velocity and the change of attitude angle, were monitored to investigate the protection capability. The flying velocity and the attitude angle are used to investigate the deviation and the penetration power respectively. The effect of rotation speed of the protector and the collision position on the protection capability is investigated in the viewpoint of deviation and attitude angle when penetrator colliding with our tank.

Development of Spherical Fine Powders by High-pressure Water Atomization Using Swirl Water Jet (II)

  • Terai, Shinji;Kikukawa, Masato;Inaba, Tsuneta;Koyama, Tadashi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.16-17
    • /
    • 2006
  • In order to obtain spherical fine powder, we have developed a new method of high-pressure water atomization system using swirl water jet with the swirl angle $(\omega)$. The effect of nozzle apex angle $(\theta)$ upon the morphology of atomized powders was investigated. Molten copper was atomized by this method, with $\omega=0.2$ rad (swirl water jet) and $\omega=0$ rad (conical water jet). It was found that the median diameter $(D_{50})$ of atomized powders decreased with decreasing $(\theta)$ down to 0.35 rad in each $\omega$, but under ${\theta}<\;0.35$ rad, $D_{50}$ increased abruptly with decreasing $\theta$ for $\omega=0$ rad, while it was still decreased with decreasing $(\theta)$ for $\omega=0.2$ rad.

  • PDF