• Title/Summary/Keyword: Conformal

Search Result 770, Processing Time 0.025 seconds

Realization of Plasmonic Adaptive Coupler using Curved Multimode Interference Waveguide (곡면형 다중모드 간섭 도파로를 사용한 플라즈마 적응 결합기의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.165-170
    • /
    • 2016
  • Nano-scale power splitter based on curved plasmonic waveguides are designed by utilizing the multimode interference (MMI) coupler. To analyze easily the adaptive properties of plasmonic curverd multimode interference coupler(PC-MMIC), the curved form transforms equivalently into a planar form by using conformal transformation method. Also, effective dielectric method and longitudinal modal transmission-line theory are used for simulating the light propagation and optimizing the structural parameters at 3-D guiding geometry. The designed $2{\times}2$ PC-MMIC does not work well for quasi-TM mode case due to the bending structure, and it does not exist 3dB coupling property, in which the power splitting ratio is 50%:50%, for quasi-TE mode case. Further, the coupling efficiency is better when the signal is incident at channel with large curvature radius than small curvature radius.

Wideband Cavity Back Antenna for Signal Intelligence (신호 정보 수집용 광대역 캐비티 백 안테나)

  • Jeoung, Gu-Ho;Lee, Seong-Kyu;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1044-1052
    • /
    • 2016
  • In this paper, a cavity back slot antenna with a rotated rectangular patch is proposed. The proposed antenna consists of a ground plane with cavity structure, a microstrip feed line, and a rectangular patch with slot. With a dimension of $55mm{\times}40mm{\times}10mm$, the proposed antenna has the wide bandwidth due to the cavity structure. Measured 10 dB return loss bandwidth and fractional bandwidth of the proposed antenna is 5,030 MHz(3.02~8.05 GHz) and 90.9 % at the center frequency of 5.05 GHz. The proposed antenna is designed and simulated using ANSYS HFSS v.15.0.0. The designed antenna is fabricated and tested to validate its performances.

Design for Radiotherapy Room with High Density Shielding Block (고 강도 차폐벽돌을 이용한 방사선치료실의 차폐설계)

  • Suh Chang Ok;Kim Gwi Eon;Chu Sung Sil
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.247-254
    • /
    • 2004
  • According to developing high energy linear accelerators and treatment methods, like (3 dimensional conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), many radiotherapy centers are replacing older linear accelerators with new higher technical machines. This often presents a shielding problem as the designed shield for the existing rooms is not adequate for the higher technical machines. Additional shielding in limited existing space becomes necessary. We are replacing older brachytherapy room with new higher technical linear accelerator for IMRT. This room is not adequate for the IMRT machine without additional shielding design. The logical development of optimum structural shielding designs with concrete and high density shielding blocks are presented. We obtained following results by comparison between the pre-calculating values and actual survey of completed LINAC installation. High density shielding blocks have more powerful radiation protection about 2 times.

  • PDF

The Study on Coordinate Transformation for Updating of Digital Map from Construction Drawing Data (건설도면 자료의 수치지도 갱신을 위한 좌표체계 부여에 관한 연구)

  • Park, Seung-Yong;Lee, Jae-Bin;Park, Woo-Jin;Yu, Ki-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.281-288
    • /
    • 2009
  • In the paper, we try to develop the methodology for updating road networks of large-scale digital maps by using construction drawing data. For the purpose, it is pre-requite step to merge road networks detached in CAD drawing data. As such, tie points are identified in neighboring drawings and used for solving the parameters of 2D conformal transformation between drawings. Then, the merged road network in CAD data is transformed to the coordinate system of digital maps. In the process, IPs in the drawings are considered as control information and 2D affine transformation is selected for coordinate transformation. Through the experiments with real dataset, we can identify that the developed method is valid and generally applicable.

A Study on the Improvement of Penumbra and Dose Distribution in the Multileaf Collimator Field Edge (다엽콜리매이터(Multileaf Collimator) 조사야의 반음영 및 선량분포 개선에 대한 연구)

  • Kim CW.;Kim HN.;Lim CK.;Ra SK.;Park BS.
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.88-93
    • /
    • 1998
  • Multileaf collimator is essential equipment in conformal radiation therapy, however the use is limitted by increase of penumbra width and undulating dose distribution at the field edge. The purpose of this study is to improve the penumbra and dose distribution in the multileaf collimator field edge. Measurement were performed with X-omat V film in solid water phantom using 6MV photon beam from Siemens linear accelerator. All the measurement were made along the central axis of $5{\times}5cm,\;10{\times}10cm$ circular field for constant SSD of 100 cm. To improve the penumbra and dose distribution collimator was rotated by 15 degrees from 0 to 90 degrees (collimator rotation method) and center was shifted to the longitudinal direction by fourth of lead width (center shift method). We compare the penumbra and dose distribution at the field edge to alloy block. Dose distribution and penumbra width at the feild edge of MLC showed undulated dose pattern and increased penumbra compared with alloy block. However, in the collimator rotation method and center shift method we abtained simular results with alloy block. Through the study we expected that clinical use of MLC will be increase.

  • PDF

A Study on the Error Estimate for Wegmann's Method applying Low Frequency Pass Filler (저주파필터를 적용한 Wegmann방법의 오차평가에 관한 연구)

  • Song Eun-Jee
    • The KIPS Transactions:PartA
    • /
    • v.12A no.2 s.92
    • /
    • pp.103-108
    • /
    • 2005
  • The purpose of numerical analysis is to design an effective algorithm to realize some mathematical model on computer. In general the approximate value, which is obtained from computer operation, is not the same as the real value that is given by mathematical theory. Therefore the mr estimate measuring how approximate value is near to the real value, is the most significant task to evaluate the efficiency of algorithm. The limit of an error is used for mr estimation at the most case, but the exact mr evaluation could not be expected to get for there is no way to know the real value of the given problem. Wegmann's method has been researched, which is one of the solution to derive the numerical conformal mapping. We proposed an improved method for convergency by applying a low frequency filter to the Wegmann's method. In this paper we investigate error analysis based on some mathematical theory and propose an effective method which makes us able to estimate an error if the real value is not acquired. This kind of proposed method is also proved by numerical experiment.

The Pattern Improvement of Leaky-wave Slot Array Antenna for Satellite Communications (위성통신용 슬롯배열 누설파 안테나의 패턴 개선)

  • Lim, Gye-Jae;Park, Jong-Seo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.69-77
    • /
    • 2009
  • Small size and low profile antenna for mobile vehicular-top-mounted is needed in satellite communication services such as DBS, Satellite Internet and VSAT. In middle latitudes, the development of an array antenna which has the conformal, low profile and 45 degree beam tilted configuration, and has the high gain with sharp beamwidth, low sidelobe and low loss is required for Ka band satellite communication. In this paper, in order to meet with these performances, an array antenna consisting of the vertical polarized waveguide longitudinal slots based on the leaky-wave mode of traveling wave antenna is proposed. Especially, for the lower sidelobe level the radiation power control using a design method of the different slot width is proposed. An array antenna consisting of 32 leakywave elements is showing 34.4 dBi of gain, 3.6 degree of beamwidth, below than -25 dB of sidelobe level, 43 degree of beam tilt angle in center frequency 20.0 GHz. Feed network designed by waveguide cooperated feed shows good performance of wideband and low loss.

  • PDF

Patterns of failure after the reduced volume approach for elective nodal irradiation in nasopharyngeal carcinoma

  • Seol, Ki Ho;Lee, Jeong Eun
    • Radiation Oncology Journal
    • /
    • v.34 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • Purpose: To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Materials and Methods: Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4-72 Gy (39.6-45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. Results: The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. Conclusion: No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC.

Fabrication of Functionally Graded Materials Between P21 Tool Steel and Cu by Using Laser-Aided Layered Manufacturing (레이저 적층조형을 이용한 P21 툴 스틸과 Cu 간 기능성 경사 복합재의 제작)

  • Jeong, Jong-Seol;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.61-66
    • /
    • 2013
  • With the development of layered manufacturing, thermally conductive molds or molds embedding conformal cooling channels can be directly fabricated. Although P21 tool steel is widely used as a mold material because of its dimensional stability, it is not efficient for cooling molds owing to its low thermal conductivity. Hence, the use of functionally graded materials (FGMs) between P21 and Cu may circumvent a tradeoff between the strength and the heat transfer rate. As a preliminary study for the layered manufacturing of thermally conductive molds having FGM structures, one-dimensional P21-Cu FGMs were fabricated by using laser-aided direct metal tooling (DMT), and then, material properties such as the thermal conductivity and specific heat that are related to the heat transfer were measured and analyzed.

Clinical Implementation of an In vivo Dose Verification System Based on a Transit Dose Calculation Tool for 3D-CRT

  • Jeong, Seonghoon;Yoon, Myonggeun;Chung, Weon Kuu;Chung, Mijoo;Kim, Dong Wook
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1571-1576
    • /
    • 2018
  • We developed and evaluated an algorithm to calculate the target radiation dose in cancer patients by measuring the transmitted dose during 3D conformal radiation treatment (3D-CRT) treatment. The patient target doses were calculated from the transit dose, which was measured using a glass dosimeter positioned 150 cm from the source. The accuracy of the transit dose algorithm was evaluated using a solid water phantom for five patient treatment plans. We performed transit dose-based patient dose verification during the actual treatment of 34 patients who underwent 3D-CRT. These included 17 patients with breast cancer, 11 with pelvic cancer, and 6 with other cancers. In the solid water phantom study, the difference between the transit dosimetry algorithm with the treatment planning system (TPS) and the measurement was $-0.10{\pm}1.93%$. In the clinical study, this difference was $0.94{\pm}4.13%$ for the patients with 17 breast cancers, $-0.11{\pm}3.50%$ for the eight with rectal cancer, $0.51{\pm}5.10%$ for the four with bone cancer, and $0.91{\pm}3.69%$ for the other five. These results suggest that transit-dosimetry-based in-room patient dose verification is a useful application for 3D-CRT. We expect that this technique will be widely applicable for patient safety in the treatment room through improvements in the transit dosimetry algorithm for complicated treatment techniques (including intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT).