• Title/Summary/Keyword: Confocal reflection microscopy

Search Result 7, Processing Time 0.03 seconds

Investigation of Layered Structure of Fiber Cell Wall in Korean Red Pine by Confocal Reflection Microscopy

  • Kwon, Ohkyung
    • Applied Microscopy
    • /
    • v.44 no.2
    • /
    • pp.61-67
    • /
    • 2014
  • Layered structures of fiber cell wall of Korean red pine (Pinus densiflora) were investigated by confocal reflection microscopy (CRM). CRM micrographs revealed detailed structures of the fiber cell wall such as S1, S2, and S3 layers as well as transition layers (S12 and S23 layers), which are present between the S1, S2, and S3 layers. Microfibril angle (MFA) measurement was possible for the S2 and S3 layer in the cell wall. The experimental results suggest that CRM is a versatile microscopic method for investigation of layered structures and MFA measurement in individual sub layer of the tracheid cell wall.

Analysis of External Fibrillation of Fiber by Confocal Reflection Microscopy (공초점반사현미경법을 이용한 섬유의 외부소섬유화 분석)

  • Kwon, Ohkyung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.2
    • /
    • pp.35-45
    • /
    • 2014
  • Confocal Reflection Microscopy (CRM) was applied to investigate external fibrillation of different types of fibers such as Kajaani reference fiber, Whatman filter fiber, thermomechanical pulp (TMP), and recycled TMP fiber. It was confirmed that the CRM images are created from surface structures of the fiber cell wall. Confocal Laser Scanning Microscopy (CLSM) captured overall shape of the fiber, but minute details of the surface of the fiber were missed. CRM captured the minute details of the fiber surface. From the CRM and CLSM images, it was observed that the CRM images mainly appeared on the fiber surfaces. External fibrillation of the fiber occurs at the fiber surface, not inside the cell wall. Thus, it was concluded that investigation on the external fibrillation of the fiber was possible by utilizing CRM images. A direct qualtitative and quantitative method for analysis of external fibrillation of fiber was demonstrated by utilizing surface area to volume ratio, volume fraction, and roughness calculated from 3-dimensional images reconstructed from stacks of CRM images from the different fibers.

Measurement of the Internal Structure of an Optical Waveguide Embedded in a Flexible Optical Circuit Board by Enhancing the Signal Contrast of a Confocal Microscope

  • Lee, Won-Jun;Kim, Dae-Chan;O, Beom-Hoan;Park, Se-Geun;Lee, El-Hang;Lee, Seung-Gol
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • In this study, the internal structure of an optical waveguide embedded in a flexible optical circuit board is observed with a confocal microscope. In order to increase the light reflection from an internal material interface with a very small index difference, and thus enhance the signal contrast, a theta microscopy scheme has been integrated into a conventional confocal microscope, and a high NA oil-immersion lens has been used. The interface reflectivity is increased from roughly 0.0015% to 0.025% by the proposed method, and the internal structure can thus be successfully measured.

Displacement measurement sensor using astigmatic confocal technology

  • J.W. Seo;D.K. Kang;Lee, J.H.;Kim, D.M.;D.G. Gweon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.163.2-163
    • /
    • 2001
  • Confocal scanning microscopy (CSM) has been reported as an excellent method using the optical probe in scanning probe microscopy (SPM). Transmission or reflection confocal scanning microscopy (TCSM, RCSM) has been used in the three-dimensional reconstruction of specimen or the non-destructive measurement in vivo. The axial movement of the primary focal point having the information of specimen gives a good measurement performance with the great sensitivity. Application of the confocal theory and astigmatism to displacement measurement sensor uses the aperture as the pinhole or slit after collecting lens relating to confocal response in non-contact measurement; and astigmatic lens using four-segments detector as short-range sensor, long-range one combining the grating and rotary one hating the rotary directional grating. The aperture type can play an ...

  • PDF

Measurement of Sub-micrometer Features Based on The Topographic Contrast Using Reflection Confocal Microscopy

  • Lee SeungWoo;Kang DongKyun;Yoo HongKi;Kim TaeJoong;Gweon Dae-Gab;Lee Suk-Won;Kim Kwang-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.26-31
    • /
    • 2005
  • We describe the design and the implementation of video-rate reflection confocal scanning microscopy (CSM) using an acousto-optical deflector (AOD) for the fast horizontal scan and a galvanometer mirror (GM) for the slow vertical scan. Design parameters of the optical system are determined for optimal resolution and contrast. The OSLO simulations show that the performances of CSM are not changed with deflection angle and the wavefront errors of the system are less than 0.012λ. To evaluate the performances of designed CSM, we do a series of tests, measuring lateral and axial resolution, real time image acquisition. Due to a higher axial resolution compared with conventional microscopy, CSM can detect the surface of sub-micrometer features. We detect 138㎚ line shape pattern with a video-rate (30 frm/sec). And 10㎚ axial resolution is archived. The lateral resolution of the topographic images will be further enhanced by differential confocal microscopy (DCM) method and computational algorithms.

Investigation of Bordered Pit Ultrastructure in Tracheid of Korean Red Pine (Pinus densiflora) by Confocal Reflection Microscopy (공초점반사현미경을 이용한 소나무 유연벽공의 초미세구조 연구)

  • Kwon, Ohkyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.346-355
    • /
    • 2014
  • Confocal reflection microscopy (CRM) was utilized to create 3-dimensional images of bordered pits and cell wall in the tracheid of Korean red pine (Pinus densiflora). Ultrastructures of torus, margo, and pit border were clearly observable in the CRM micrograph. Micrograph of cross-field pit revealed the connecting and supporting structure between tracheid and ray parenchyma cell. The CRM micrographs enabled to investigate detailed structures of tracheid cell wall such as S1, S2, S3 layers, transition layers between these layers, and microfibril (MF) orientation in S3 and S2 layers as well as complicated distribution of MF orientation around bordered pits. Not only concentric MF orientation of border thickening in the pit border was observed, but also changes in MF orientation from the cell wall to the border. From the experimental results, the CRM was thought to be a versatile microtechnique to investigate detailed structures of cell wall and bordered pit in the tracheid and cross-field pit between tracheid and ray parenchyma cell.

Particle Image Velocimetry of the Blood Flow in a Micro-channel Using the Confocal Laser Scanning Microscope

  • Kim, Wi-Han;Kim, Chan-Il;Lee, Sang-Won;Lim, Soo-Hee;Park, Cheol-Woo;Lee, Ho;Park, Min-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.42-48
    • /
    • 2010
  • We used video-rate Confocal Laser Scanning Microscopy (CLSM) to observe the motion of blood cells in a micro-channel. Video-rate CLSM allowed us to acquire images at the rate of 30 frames per second. The acquired images were used to perform Particle Image Velocimetry (PIV), thus providing the velocity profile of the blood in a micro-channel. While previous confocal microscopy-assisted PIV required exogenous micro/nano particles as the tracing particles, we employed blood cells as tracing particles for the CLSM in the reflection mode, which uses light back-scattered from the sample. The blood flow at various depths of the micro-channel was observed by adjusting the image plane of the microscope. The velocity profile at different depths of the channel was measured. The confocal micro-PIV technique used in the study was able to measure blood velocity up to a few hundreds ${\mu}m/sec$, equivalent to the blood velocity in the capillaries of a live animal. It is expected that the technique presented can be applied for in vivo blood flow measurement in the capillaries of live animals.