Browse > Article
http://dx.doi.org/10.3807/JOSK.2011.15.1.009

Measurement of the Internal Structure of an Optical Waveguide Embedded in a Flexible Optical Circuit Board by Enhancing the Signal Contrast of a Confocal Microscope  

Lee, Won-Jun (Department of Information and Communication Engineering, INHA University)
Kim, Dae-Chan (Department of Information and Communication Engineering, INHA University)
O, Beom-Hoan (Department of Information and Communication Engineering, INHA University)
Park, Se-Geun (Department of Information and Communication Engineering, INHA University)
Lee, El-Hang (Department of Information and Communication Engineering, INHA University)
Lee, Seung-Gol (Department of Information and Communication Engineering, INHA University)
Publication Information
Journal of the Optical Society of Korea / v.15, no.1, 2011 , pp. 9-14 More about this Journal
Abstract
In this study, the internal structure of an optical waveguide embedded in a flexible optical circuit board is observed with a confocal microscope. In order to increase the light reflection from an internal material interface with a very small index difference, and thus enhance the signal contrast, a theta microscopy scheme has been integrated into a conventional confocal microscope, and a high NA oil-immersion lens has been used. The interface reflectivity is increased from roughly 0.0015% to 0.025% by the proposed method, and the internal structure can thus be successfully measured.
Keywords
Confocal microscopy; Fiber optical confocal scanning microscope; Optical waveguide; Oil-immersion lens; Theta microscopy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 S. Lindek and E. H. K. Stelzer, “Optical transfer functionsfor confocal theta fluorescence microscopy,” J. Opt. Soc.Am. A 13, 479-482 (1996).   DOI
2 M. J. Mandella, M. H. Garrett, and G. S. Kino, “Integratedangled-dual-axis confocal scanning endoscopes,” U.S. Patent 6522444 (2003).
3 M. J. Mandella, G. S. Kino, and N. Y. Chan, “Dual-axisconfocal microscope having improved performance forthick samples,” U.S. Patent 7242521 (2007).
4 G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopyfor three-dimensional mechanical imaging,” Nature Photonics2, 39-43 (2008).   DOI
5 P. J. Dwyer, C. A. Dimarzio, and M. Rajadhyaksha, “Confocaltheta line-scanning microscope for imaging human tissues,”Appl. Opt. 46, 1843-1851 (2007).   DOI
6 T. Dabbs and M. Glass, “Fiber-optic confocal microscope,”Appl. Opt. 31, 3030-3035 (1992).   DOI
7 L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometrywith a fiber optical confocal scanning microscope,”Meas. Sci. Technol. 11, 1786-1791 (2000).   DOI   ScienceOn
8 D. H. Hartman, G. R. Lalk, J. W. Howse, and R. R.Krchnavek, “Radiant cured polymer optical waveguides onprinted circuit boards for photonic interconnection use,” Appl.Opt. 28, 40-47 (1989).   DOI
9 E.-H. Lee, S. G. Lee, B. H. O, and S.-G. Park, “Polymer-basedoptical printed circuit board (O-PCB) as a potentialplatform for VLSI microphotonic integration,” J. NonlinearOpt. Phys. & Mater. 14, 409-425 (2005).   DOI   ScienceOn
10 B.-H. Lee, N.-H. Shin, K. Jeong, M.-J. Park, B.-G. Kim,J.-H. Yoo, D.-G. Kim, K.-H. Yun, K.-S. Lee, K.-H. Kim,D.-K. Kim, and S.-H. Park, “Nondestructive optical measurementof refractive-index profile of graded-index lenses,” J.Opt. Soc. Korea 13, 468-471 (2009).   과학기술학회마을   DOI   ScienceOn
11 D.-S. Park, B.-H. O, S.-G. Park, E.-H. Lee, J.-H. Park, andS.-G. Lee, “Noise-robust phase gradient retrieval formulationfor phase-shifting interferometry,” J. Opt. Soc. Korea 14,131-136 (2010).   과학기술학회마을   DOI   ScienceOn
12 T. Wilson, Confocal Microscope (Academic Press, Oxford,UK, 1990).
13 G. Min, Principles of Three-dimensional Imaging inConfocal Microscopes (World Scientific, Singapore, 1996).
14 R. Kassies, K. O. Van Der Werf, A. Lenferink, C. N.Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “CombinedAFM and confocal fluorescence microscope for applicationsin bio-nanotechnology,” J. Microscopy 217, 109-116 (2004).
15 A. Gerger, R. Hofmann-Wellenhof, U. Langsenlehner, E.Richtig, S. Koller, W. Weger, V. Ahlgrimm-Siess, M.Horn, H. Samonigg, and J. Smolle, “In vivo confocal laserscanning microscopy of melanocytic skin tumours diagnosticapplicability using unselected tumour images,” Br. J.Dermatol. 158, 329-333 (2008).   DOI   ScienceOn
16 C. R. Fairley, T.-Y. Fu, B.-M. B. Tsai, and S. A. Young,“Confocal wafer inspection system and method,” U.S. Patent 0273196 (2008).
17 S. Lindek, C. Cremer, and E. H. K. Stelzer, “Confocaltheta fluorescence microscopy with annular apertures,” Appl.Opt. 35, 126-130 (1996).   DOI
18 G. L. Bona, B. J. Offreina, U. Bapsta, C. Bergera, R.Beyelera, R. Buddb, R. Dangela, L. Dellmanna, and F. Horsta,“Characterization of parallel optical-interconnect waveguidesintegrated on a printed circuit board,” Proc. SPIE 5453,134-141 (2004).   DOI
19 C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera,and R. T. Chen, “Flexible optical waveguide film fabricationsand optoelectronic devices integration for fully embeddedboard level optical interconnects,” J. Lightwave Technol.22, 2168-2176 (2004).   DOI   ScienceOn