• 제목/요약/키워드: Confocal optical scanning system

검색결과 19건 처리시간 0.035초

Signal increasing method in confocal scanning microscopy in fluorescence mode using curved mirror

  • Kang, Dong-kyun;Seo, Jung-woo;Gweon, Dae-gab
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.99.3-99
    • /
    • 2001
  • In fluorescence mode confocal scanning microscope, level of detected signal is very low. In object scanning type confocal scanning microscope, the additional optical system with objective lens and plane mirror was proposed to increase signal intensity, but there was none for beam scanning type confocal scanning microscope. We propose reflecting optical systems which improve signal intensity in beam scanning type confocal scanning microscope. We choose one of the proposed optical systems and design the optical system, i.e., select optical components and assign distances between the selected components. To design the optical system, we use finite ray tracing method and make cost function to be minimized.

  • PDF

형광 공초점 주사 현미경의 측정 강도 향상을 위한 반사 광학계의 제안 및 설계 (Proposal and design of reflecting optical system to improve detection intensity in fluorescence confocal scanning microscopy)

  • 강동균;서정우;권대갑
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.187-190
    • /
    • 2002
  • Confocal microscopy is very popular technology in bio-medical inspection due to its ability to reject background signals and to measure very thin slide of thick specimens, which is called optical sectioning. But intensity of detected signal in fluorescence type confocal microscopy is so small that only 0.2% of emitted fluorescence light can be detected in the best case. In this paper, we proposed the reflecting optical system to improve the detection intensity and designed the optical system by optimal design method. At the end of the paper, we analyzed the characteristics of the proposed reflecting optical system.

  • PDF

광섬유 공초점 간섭 현미경과 위상 변위법을 결합한 표면 검색 (Surface profiling by the phase shifting method in fiber-optical confocal scanning interference microscopes)

  • 김대찬;이승걸
    • 한국광학회지
    • /
    • 제10권3호
    • /
    • pp.201-207
    • /
    • 1999
  • 단일모드 광섬유와 결합기를 이용하여 간결한 구조의 광섬유 공초점 간섭 현미경을 구성하였으며, 위상 변위법을 응용한 표면 검색 방법을 제안하여 통신용의 반도체 레이저와 같이 비교적 긴 파장의 광원과, 낮은 NA의 대물렌즈를 사용하더라도 정밀한 시료 표면 검색이 가능함을 보였다. 이때 시료 표면의 높낮이는 시료로부터 반사된 빛의 위상으로부터 결정되며, 종래의 공초점 현미경에 비하여 주사시간을 크게 단축할 수 있었다. 끝으로 종래의 방법에 비해 제안된 방법은 시료의 반사율 변화에 덜 민감함을 확인할 수 있었다.

  • PDF

Flexure hinge mechanism having amplified rectilinear motion for confocal scanning microscopy using optical section

  • Kwon, Oh-Kyu;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.162.6-162
    • /
    • 2001
  • Confocal scanning microscopy (CSM) is an important instrument in a wide variety of imaging applications because of its ability to provide three-dimensional images of thick, volume specimens. The mechanism for two-dimensional beam scanning and optical sectioning has an important roe in CSM as the three-dimensional profiler. This optical sectioning property arises from the use of a point detector, which serves to attenuate the signals from out-of-focus. The intensity profile for the open loop scanning should be matched with its response for the standard. The non-linearity can be minimized with the optical sectioning or the optical probe of the closed loop control. This paper shows the mathematical expression of the light such as the extinction curve in the optical fields of system using AO deflector, the axial/lateral response experimentally when the error sources change, and the methods of optical sectioning. Thorough design of optical sectioner is crucial to the success of CSM in the field ...

  • PDF

Monte Carlo 방법을 이용한 공초점 주사 현미경의 오차 분석과 정렬 공차 할당에 관한 연구 (Error Analysis and Alignment Tolerancing for Confocal Scanning Microscope using Monte Carlo Method)

  • 유홍기;강동균;이승우;권대갑
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.92-99
    • /
    • 2004
  • The errors can cause the serious loss of the performance of a precision machine system. In this paper, we proposed the method of allocating the alignment tolerances of the parts and applied this method to get the optimal tolerances of a Confocal Scanning Microscope. In general, tight tolerances are required to maintain the performance of a system, but a high cost of manufacturing and assembling is required to preserve the tight tolerances. The purpose of allocating the optimal tolerances is minimizing the cost while keeping the high performance of the system. In the optimal problem, we maximized the tolerances while maintaining the performance requirements. The Monte Carlo Method, a statistical simulation method, is used in tolerance analysis. Alignment tolerances of optical components of the confocal scanning microscope are optimized to minimize the cost and to maintain the observation performance of the microscope. We can also apply this method to the other precision machine system.

손톱하부면 초상(nail bed) 패턴의 콘포칼 광 스케닝 방법을 이용한 추출과 개인인증 (Individual identification by extraction of nail bed pattern of the finger nail using confocal scanning optical system)

  • 김태근;김용우;김해일(주)미래시스
    • 한국광학회지
    • /
    • 제13권2호
    • /
    • pp.155-161
    • /
    • 2002
  • 혼탁매질인 손톱의 하부면에는 개인별로 상이한 융선과 곡 구조의 패턴인 조상(爪床, nail bed)이 있다. 이중 융선에는 혈액이 흐르는 모세혈관 고리(capillary loop)가 밀집되 있고 융선과 융선은 모세혈관 고리가 밀집되 있지 않은 골로 구분되어 있다. 670nm 파장의 레이저 빛은 피부의 진피(dermis)에서 산란특성을 가지며 혈액에는 강하게 흡수된다. 손톱하부면 조상(nail bed)의 이와 같은 생체-광학적 특성에 착안하여 혼파매질인 손톱하부면에 위치하는 조상(nail bed) 패턴을 얻어내는 콘포칼 광 스케닝(confocal optical scanning) 구조를 특징으로 하는 광학계를 제안한다. 그리고 이를 이용하여 개인별로 상이한 조상(nail bed) 패턴을 추출해 조상(nail bed) 패턴간의 correlation를 구해 비교함으로써 개인을 구별해내는 개인인증 기법을 제안한다.

Reflection-type Optical Waveguide Index Profiling Technique

  • Youk YoungChun;Kim Dug Young
    • Journal of the Optical Society of Korea
    • /
    • 제9권2호
    • /
    • pp.49-53
    • /
    • 2005
  • We report a new configuration of a reflection-type confocal scanning optical microscope system for measuring the refractive index profile of an optical waveguide. Several improvements on the earlier design are proposed; a light emitting diode (LED) at 650 nm wavelength instead of a laser diode (LD) or He-Ne laser is used as a light source for better index precision, and a simple longitudinal linear scanning and curve fitting techniques are adapted instead of a servo control for maintaining an optical confocal arrangement. We have obtained spatial resolution of 700 nm and an index precision of $2\times10^{-4}$. To verify the system's capability, the refractive index profiles of a conventional multimode fiber and a home-made four-mode fiber were examined with our proposed measurement method.

Preconditions for High Speed Confocal Image Acquisition with DMD Scanning.

  • Shim, S.B.;Lee, K.J.;Lee, J.H.;Hwang, Y.H.;Han, S.O.;Pak, J.H.;Choi, S.E.;Milster, Tom D.;Kim, J.S.
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2006년도 하계학술발표회 논문집
    • /
    • pp.39-40
    • /
    • 2006
  • Digital image-projection and several modifications are the classical applications of Digital Micromirror Devices (DMD), however further applications in the field of optical metrology are also available. Operated with certain patterns, a DMD can function, for instance, as an array of pinholes that may substitute the Galvanic mirror or the stage scanning system presently used for 2 dimensional scanning in confocal microscopes. The various process parameters that influence the result of measurement (e.g. pinhole size, lateral scanning pitch and the number of pinholes used simultaneously, etc.) should be configured precisely for individual measurements by appropriately operating the DMD. This paper presents suitable conditions for the diffraction limited analysis between DMD-optics-CCD to achieve the best performance. Also sampling theorem that is necessary for the image acquisition by scanning system is simulated with OPTISCAN which is the simulator based on the diffraction theory.

  • PDF

Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler

  • Yoo, Hong-Ki;Lee, Seung-Woo;Kang, Dong-Kyun;Kim, Tae-Joong;Gweon, Dae-Gab;Lee, Suk-Won;Kim, Kwang-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.3-7
    • /
    • 2006
  • Confocal scanning microscopy is a measurement technique used to observe micrometer and sub-micrometer features due to its high resolution, nondestructive properties, and 3D surface profiling capabilities. The design, implementation, and performance test of a confocal scanning microscopy system are presented in this paper. A short-wavelength laser (405 nm) and an objective lens with a high numerical aperture (0.95) were used to achieve the desired high resolution, while the x- and y-axis scans were implemented using an acousto-optic deflector and galvanomirror, respectively. An objective lens with a piezo-actuator was used to scan the z-axis. A spatial resolution of less than 138 nm was achieved, along with successful 3D surface reconstructions.