• 제목/요약/키워드: Confocal Raman spectroscopy

검색결과 12건 처리시간 0.022초

Rapid Detection of Methicillin Resistant Staphylococcus aureus Based on Surface Enhanced Raman Scattering

  • Han, Dae Jong;Kim, Hyuncheol
    • 대한임상검사과학회지
    • /
    • 제46권4호
    • /
    • pp.136-139
    • /
    • 2014
  • Methicillin-resistant Staphylococcus aureus (MRSA) is one of the severe nosocomial infectious agents. The traditional diagnostic methods including biochemical test, antibiotic susceptibility test and PCR amplification are time consuming and require much work. The Surface enhanced Raman spectroscopy (SERS) biosensor is a rapid and powerful tool for analyzing the chemical composition within a single living cell. To identify the biochemical and genetic characterization of clinical MRSA, all isolates from patients were performed with VITEK2 gram positive (GP) bacterial identification and Antibiotic Susceptibility Testing (AST). Virulence genes of MRSA also were identified by DNA based PCR using specific primers. All isolates, which were placed on a gold coated nanochip, were analyzed by a confocal Raman microscopy system. All isolates were identified as S. aureus by biochemical tests. MRSA, which exhibited antibiotic resistance, demonstrated to be positive gene expression of both femA and mecA. Furthermore, Raman shift of S. aureus and MRSA (n=20) was perfectly distinguished by a confocal Raman microscopy system. This novel technique explained that a SERS based confocal Raman microscopy system can selectively isolate MRSA from non-MRSA. The study recommends the SERS technique as a rapid and sensitive method to detect antibiotic resistant S. aureus in a single cell level.

라만 분광법을 이용한 반도체 공정 중 표면 분석 (Surface analysis using Raman spectroscopy during semiconductor processing)

  • 최태민;유진욱;정은수;이채연;이화림;김동현;표성규
    • 한국표면공학회지
    • /
    • 제57권2호
    • /
    • pp.71-85
    • /
    • 2024
  • This article provides an overview of Raman spectroscopy and its practical applications for surface analysis of semiconductor processes including real-time monitoring. Raman spectroscopy is a technique that uses the inelastic scattering of light to provide information on molecular structure and vibrations. Since its inception in 1928, Raman spectroscopy has undergone continuous development, and with the advent of SERS(Surface Enhanced Raman Spectroscopy), TERS(Tip Enhanced Raman Spectroscopy), and confocal Raman spectroscopy, it has proven to be highly advantageous in nano-scale analysis due to its high resolution, high sensitivity, and non-destructive nature. In the field of semiconductor processing, Raman spectroscopy is particularly useful for substrate stress and interface characterization, quality analysis of thin films, elucidation of etching process mechanisms, and detection of residues.

The Investigation of Electro-Oxidation of Methanol on Pt-Ru Electrode Surfaces by in-situ Raman Spectroscopy

  • She, Chun-Xing;Xiang, Juann;Ren, Bin;Zhong, Qi-Ling;Wang, Xiao-Cong;Tian, Zhong-Qun
    • 전기화학회지
    • /
    • 제5권4호
    • /
    • pp.221-225
    • /
    • 2002
  • Assisted by the highly sensitive confocal microprobe Raman spectrometer and proper surface roughening procedure, the Raman investigation on the adsorption and reaction of methanol was performed on Pt-Ru electrodes with different coverages. A detailed description of the roughening process of the Pt electrodes and the underpotential deposition of the Ru was given. Reasonably good Raman signal reflecting the metal-carbon vibration and CO vibration was detected. The appearance of vibrations of the Ru oxides, together with the existence of Ru-C, Pt-C and CO bands, clearly demonstrates the participation of the bi-functional mechanism during the oxidation process of methanol on Pt-Ru electrodes. The Pt-Ru electrode was found to have a higher catalytic activity over Pt electrodes. This preliminary study shows that electrochemical Raman spectroscopy can be applied to the study of rough electrode surface.

Standoff Raman Spectroscopic Detection of Explosive Molecules

  • Chung, Jin Hyuk;Cho, Soo Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1668-1672
    • /
    • 2013
  • We developed a standoff Raman detection system for explosive molecules (EMs). Our system was composed of reflective telescope with 310 mm diameter lens, 532 nm pulse laser, and Intensified Charge-Coupled Device (ICCD) camera. In order to remove huge background noise coming from ambient light, laser pulses with nanosecond time width were fired to target sample and ICCD was gated to open only during the time when the scattered Raman signal from the sample arrived at ICCD camera. We performed standoff experiments with military EMs by putting the detector at 10, 20 and 30 m away from the source. The standoff results were compared with the confocal Raman results. Based on our standoff experiments, we were able to observe the peaks in the range of 1200 and $1600cm^{-1}$, where vibrational modes of nitro groups were appeared. The wave numbers and shapes of these peaks may serve as good references in detecting and identifying various EMs.

공초점 라만스펙트럼을 이용한 자동 기저세포암 검출 (Automatic Basal Cell Carcinoma Detection using Confocal Raman Spectra)

  • 민소희;박아론;백성준;김진영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.255-256
    • /
    • 2006
  • Raman spectroscopy has strong potential for providing noninvasive dermatological diagnosis of skin cancer. In this study, we investigated two classification methods with maximum a posteriori (MAP) probability and multi-layer perceptron (MLP) classification. The classification framework consists of preprocessing of Raman spectra, feature extraction, and classification. In the preprocessing step, a simple windowing method is proposed to obtain robust features. Classification results with MLP involving 216 spectra preprocessed with the proposed method gave 97.3% sensitivity, which is very promising results for automatic Basal Cell Carcinoma (BCC) detection.

  • PDF

Single-walled Carbon Nanotube-triethylammonium Ionic Liquid as a New Catalytic System for Michael Reaction

  • Attri, Pankaj;Choi, Eun Ha;Kwon, Gi-Chung;Bhatia, Rohit;Gaur, Jitender;Arora, Bharti;Kim, In Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.3035-3040
    • /
    • 2014
  • A new efficient catalytic method for aza/thia-Michael addition reactions of amines/thiols with higher product yields has been developed. Combining single-walled carbon nanotubes (SWCNT) with triethylammonium hydrogen phosphate (TEAP) ionic liquid (IL) can work as a catalyst. We utilized Raman spectroscopy to gain insight into the interactions between IL and SWCNT. The interactions between SWCNT with TEAP were confirmed by the increasing intensity ratios and spectral shift in wavelength of the Raman D and G bands of SWCNT. Further, the morphology of the resulting composite materials of TEAP and SWCNT was determined by using scanning electron microscopy (SEM). Higher product yield in reduced reaction time is the key advantage of using bucky gel as a catalyst for Michael reaction.

Detection of Iron Phases Presents in Archaeological Artifacts by Raman Spectroscopy

  • Barbosa, A.L.;Jimenez, C.;Mosquera, J.A.
    • Corrosion Science and Technology
    • /
    • 제17권2호
    • /
    • pp.60-67
    • /
    • 2018
  • The compounds associated with corrosion, in metallic archaeological samples of carbon steel of insular origin were evaluated to establish their degree of deterioration and structural damage against air pollution. The iron phases present in samples of archaeological artifacts were detected by Raman spectroscopy and confocal Raman microcopy. These samples mainly exhibited ing mainly ${\beta}$-FeO(OH) type goethite oxyhydroxides and small amounts of akaganeite ${\alpha}$-FeO(OH) lepidocrocite ${\gamma}$-FeO(OH) due to dominant chloride in a marine environment and non-stoichiometric oxyhydroxides Fe (II + / III +) as indicators of early corrosion. Some parts showed the presence of magnetic maghemite indicating high corrosion. ${\gamma}$-FeO(OH) is a precursor of phases associated with advanced marine corrosion. By studying its decomposition by Raman spectroscopy, it was synthesized with the following sequence: ${\gamma}-FeO(OH){\rightarrow}{\alpha}-FeO(OH)+{\gamma}-FeO(OH)$, ${\rightarrow}{\gamma}-Fe_2O_3+Fe_3O_4$. Ferric compounds provided evidence for the effect of intensity of laser on them, constituting a very useful input for the characterization of oxidation of iron in this type of artifacts. Thus, destructive analysis techniques should be avoided in addition to the use of small amounts of specimen.

Front-end investigations of the coated particles of nuclear fuel samples - ion polishing method

  • Krajewska, Zuzanna M.;Buchwald, Tomasz;Tokarski, Tomasz;Gudowski, Wacław
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.1935-1946
    • /
    • 2022
  • The investigations of the coated-particles of nuclear fuel samples are carried out in three stages: front-end, irradiation in the reactor core, and post-irradiation examination. The front-end stage is the initial analysis of the failures rates of produced samples before they are placed in the reactor core. The purpose of the verification is to prepare the particles for an experiment that will determine the degree of damage to the coated particles at each stage. Before starting experiments with the samples, they must be properly prepared. Polishing the samples in order to uncover the inner layers is an important, initial experimental step. The authors of this paper used a novel way to prepare samples for testing - by applying an ion polisher. Mechanical polishing used frequently for sample preparations generates additional mechanical damages in the studied fuel particle, thus directly affecting the experimental results. The polishing methods were compared for three different coated particles using diagnostic methods such as Raman spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy. Based on the obtained results, it was concluded that the ion polishing method is better because the level of interference with the structures of the individual layers of the tested samples is much lower than with the mechanical method. The same technique is used for the fuel particles undergone ion implantation simulating radiation damage that can occur in the reactor core.

양자성, 비양자성 이온성 액체와 새롭게 합성된 낮은 밴드갭을 갖는 고분자와의 상호작용에 의한 전기적,광학적 특성 연구 (Electrical and Optical Properties of Newly Synthesised Low Bandgap Polymer with Protic and Aprotic Ionic Liquids)

  • 김중일;김인태
    • 한국응용과학기술학회지
    • /
    • 제30권3호
    • /
    • pp.461-471
    • /
    • 2013
  • Use of low bandgap polymers is the most suitable way to harvest a broader spectrum of solar radiations for solar cells. But, still there is lack of most efficient low bandgap polymer. In order to solve this problem, we have synthesised a new low bandgap polymer and investigated its interaction with the ILs to enhance its conductivity. ILs may undergo almost unlimited structural variations; these structural variations have attracted extensive attention in polymer studies. In addition to this, UV-Vis spectroscopy, confocal Raman spectroscopy and FT-IR spectroscopy results have revealed that all studied ILs (tributylmethylammonium methyl sulfate [$N_{1444}$][$MeSO_4$] from ammonium family) and 1-methylimidazolium chloride ([MIM]Cl, and 1-butyl-3-methylimidazolium chloride [Bmim]Cl from imidazolium family) has potential to interact with polymer. Further, protic ILs shows enhanced conductivity than aprotic ILs with low bandgap polymer. This study provides the combined effect of low bandgap polymer and ILs that may generate many theoretical and experimental opportunities.