DOI QR코드

DOI QR Code

Surface analysis using Raman spectroscopy during semiconductor processing

라만 분광법을 이용한 반도체 공정 중 표면 분석

  • Tae Min Choi (School of Integrative Engineering, Chung-Ang University) ;
  • JinUk Yoo (School of Integrative Engineering, Chung-Ang University) ;
  • Eun Su Jung (School of Integrative Engineering, Chung-Ang University) ;
  • Chae Yeon Lee (School of Integrative Engineering, Chung-Ang University) ;
  • Hwa Rim Lee (School of Integrative Engineering, Chung-Ang University) ;
  • Dong Hyun Kim (School of Integrative Engineering, Chung-Ang University) ;
  • Sung Gyu Pyo (School of Integrative Engineering, Chung-Ang University)
  • 최태민 (중앙대학교 융합공학부) ;
  • 유진욱 (중앙대학교 융합공학부) ;
  • 정은수 (중앙대학교 융합공학부) ;
  • 이채연 (중앙대학교 융합공학부) ;
  • 이화림 (중앙대학교 융합공학부) ;
  • 김동현 (중앙대학교 융합공학부) ;
  • 표성규 (중앙대학교 융합공학부)
  • Received : 2024.04.15
  • Accepted : 2024.04.22
  • Published : 2024.04.30

Abstract

This article provides an overview of Raman spectroscopy and its practical applications for surface analysis of semiconductor processes including real-time monitoring. Raman spectroscopy is a technique that uses the inelastic scattering of light to provide information on molecular structure and vibrations. Since its inception in 1928, Raman spectroscopy has undergone continuous development, and with the advent of SERS(Surface Enhanced Raman Spectroscopy), TERS(Tip Enhanced Raman Spectroscopy), and confocal Raman spectroscopy, it has proven to be highly advantageous in nano-scale analysis due to its high resolution, high sensitivity, and non-destructive nature. In the field of semiconductor processing, Raman spectroscopy is particularly useful for substrate stress and interface characterization, quality analysis of thin films, elucidation of etching process mechanisms, and detection of residues.

Keywords

References

  1. H.S. Nalwa, Handbook of surfaces and interfaces of materials, five-volume set, Elsevier, (2001)
  2. S.Y. Ding, J. Yi, J.F. Li, B. Ren, D.Y. Wu, R. Panneerselvam, Z.Q. Tian, Nanostructure-based plasmon-enhanced raman spectroscopy for surface analysis of materials, Nature Reviews Materials, 1 (2016) 1-16.
  3. Z. Xu, Z. He, Y. Song, X. Fu, M. Rommel, X. Luo, A. Hartmaier, J. Zhang, F. Fang, Topic review: Application of raman spectroscopy characterization in micro/ nano-machining, Micromachines, 9 (2018) 361.
  4. F. Laermer, A. Schilp, Method of anisotropically etching silicon, United States Patent US, US5501893A, 26 Mar. 1996.
  5. R.S. Das, Y.K. Agrawal, Raman spectroscopy : recent advancements, techniques and applications, Vibrational Spectroscopy, 57 (2011) 163-176.
  6. H.H. Willard, J. Merritt L L, J.A. Dean, J. Settle F A, Instrumental methods of analysis, 7th edition, Florence, KY (US); Wadsworth Publishing Company, United States, (1988)
  7. C.V. Raman, K.S. Krishnan, A new type of secondary radiation, Nature, 121 (1928) 501-502.
  8. P. Rostron, S. Gaber, D. Gaber, Raman spectroscopy, review, Laser (2016) 24-64.
  9. T. Dieing, O. Hollricher, J. Toporski, Confocal raman microscopy, Springer, (2011)
  10. J.R. Ferraro, Introductory raman spectroscopy, Elsevier, (2003)
  11. B. Pettinger, Tip-enhanced raman spectroscopy (TERS), in: surface-enhanced raman scattering: physics and applications, Springer, (2006) 217-240.
  12. G. Abstreiter, Micro-raman spectroscopy for characterization of semiconductor devices, Applied Surface Science 50 (1991) 73-78.
  13. D. Nesheva, Raman scattering from semiconductor nanoparticles and superlattices, Journal of Optoelectronics and Advanced Materials, 7 (2005) 185-192.
  14. W.S. Yoo, K. Kang, T. Ueda, T. Ishigaki, H. Nishigaki, N. Hasuike, H. Harima, M. Yoshimoto, C.S. Tan, Characterization of hetero-epitaxial Ge films on Si using multiwavelength micro-raman spectroscopy, ECS Journal of Solid State Science and Technology, 4 (2014) 9-15.
  15. N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, S. Kawata, Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy, Journal of Raman Spectroscopy, 38 (2007) 684-696.
  16. I.A. Alhomoudi, G. Newaz, Residual stresses and raman shift relation in anatase TiO2 thin film, Thin Solid Films, 517 (2009) 4372-4378.
  17. J.C. Burton, L. Sun, M. Pophristic, S.J. Lukacs, F.H. Long, Z.C. Feng, I.T. Ferguson, Spatial characterization of doped SiC wafers by raman spectroscopy, Journal of Applied Physics, 84 (1998) 6268-6273.
  18. L. Ma, W. Qiu, X. Fan, Stress/strain characterization in electronic packaging by micro-Raman spectroscopy: A review, Microelectronics Reliability, 118 (2021) 114045.
  19. I. De Wolf, Stress measurements in si microelectronics devices using Raman spectroscopy, Journal of Raman Spectroscopy, 30 (1999) 877-883.
  20. I. De Wolf, Micro-raman spectroscopy to study local mechanical stress in silicon integrated circuits, Semiconductor Science and Technology, 11 (1996) 139-154.
  21. J. Chen, I. De Wolf, Theoretical and experimental raman spectroscopy study of mechanical stress induced by electronic packaging, Components and Packaging Technologies, IEEE Transactions On, 28 (2005) 484-492.
  22. P. Brault Jacky Mathias, C. Lure, P. Ranson, O. Texier, In situ raman spectroscopy of silicon surfaces during SF6 plasma etching Ll, Journal of Physics: CondensedMatter, 6 (1994) 1-6.
  23. C. Gatzke, S.J. Webb, K. Fobelets, R.A. Stradling, Semiconductor science and technology in situ raman spectroscopy of the selective etching of antimonides in GaSb/AlSb/InAs heterostructures, Semiconductor Science And Technology, 13 (1998) 399-403.
  24. Y. Liu, B. Sun, L. Tajcmanova, C. Liu, J. Wu, Effect of carbon residues structures on burnout characteristic by FTIR and Raman spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 272 (2022) 120947.
  25. N. Jung, A.C. Crowther, N. Kim, P. Kim, L. Brus, Raman enhancement on graphene: adsorbed and intercalated molecular species, Acs Nano, 4 (2010) 7005-7013.
  26. A.C. Ferrari, J. Robertson, Interpretation of raman spectra of disordered and amorphous carbon, Physical Review B, 61 (2000) 14095.
  27. R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, R. Kotz, Surface studies of carbon films from pyrolyzed photoresist, Thin Solid Films, 396 (2001) 36-43.
  28. A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Physical Review B, 64 (2001) 075414.
  29. H. Kaur, Instrumental methods of chemical analysis, Pragati Prakashan, 2010.
  30. J. Robertson, Clarke's analytical forensic toxicology, Taylor & Francis, 2008.
  31. G. Panczer, D. De Ligny, C. Mendoza, M. Gaft, A.M. Seydoux-Guillaume, X. Wang, Raman and fluorescence, (2012).
  32. M.J. Pelletier, Quantitative analysis using raman spectrometry, Applied Spectroscopy, 57 (2003) 20A-42A.
  33. K.P.J. Williams, S.M. Mason, Future directions for fourier transform raman spectroscopy in industrial analysis, Spectrochimica Acta Part A: Molecular Spectroscopy, 46 (1990) 187-196.
  34. K.D.O. Jackson, M.J.R. Loadman, C.H. Jones, G. Ellis, Fourier transform raman spectroscopy of elastomers: An overview, Spectrochimica Acta Part A: Molecular Spectroscopy, 46 (1990) 217-226.
  35. S. Fukura, T. Mizukami, S. Odake, H. Kagi, Factors determining the stability, resolution, and precision of a conventional Raman spectrometer, Applied Spectroscopy, 60 (2006) 946-950.
  36. A. Orlando, F. Franceschini, C. Muscas, S. Pidkova, M. Bartoli, M. Rovere, A. Tagliaferro, A comprehensive review on Raman spectroscopy applications, Chemosensors, 9 (2021).
  37. D. Rohleder, G. Kocherscheidt, K. Gerber, W. Kiefer, W. Kohler, J. Mo cks, W. Petrich, Comparison of midinfrared and Raman spectroscopy in the quantitative analysis of serum, Journal of Biomedical Optics, 10 (2005) 31108.
  38. X. Fan, Y. Zeng, Y. Zhi, T. Nie, Y. Xu, X. Wang, Signal-to-noise ratio enhancement for raman spectra based on optimized raman spectrometer and convolutional denoising autoencoder, Journal of Raman Spectroscopy, 52 (2021) 890-900.
  39. R. Tabaksblat, R.J. Meier, B.J. Kip, Confocal Raman microspectroscopy: theory and application to thin polymer samples, Applied Spectroscopy, 46 (1992) 60-68.
  40. S. Schlucker, Surface-enhanced raman spectroscopy: concepts and chemical applications, Angewandte Chemie International Edition, 53 (2014) 4756-4795.
  41. P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Surface-enhanced raman spectroscopy, Annual Review of Analytical Chemistry, 1 (2008) 601-626.
  42. T. Deckert-Gaudig, A. Taguchi, S. Kawata, V. Deckert, Tip-enhanced Raman spectroscopy - from early developments to recent advances, Chemical Society Reviews, 46 (2017) 4077-4110.
  43. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced raman scattering, Science, 275 (1997) 1102-1106.
  44. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced raman scattering (SERS), Physical Review Letters, 78 (1997) 1667.
  45. H. Raether, Plasmons on smooth and rough surfaces and on gratings, Springer Tracts in Modern Physics, 10 (1988).
  46. G. V Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver, Advanced Materials, 25 (2013) 3264-3294.
  47. M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology, Nature Nanotechnology, 10 (2015) 25-34.
  48. L. Meng, C. Yam, Y. Zhang, R. Wang, G. Chen, Multiscale modeling of plasmonenhanced power conversion efficiency in nanostructured solar cells, The Journal of Physical Chemistry Letters, 6 (2015) 4410-4416.
  49. D. Zeisel, V. Deckert, R. Zenobi, T. Vo-Dinh, Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films, Chemical Physics Letters, 283 (1998) 381-385.
  50. M. Micic, N. Klymyshyn, Y.D. Suh, H.P. Lu, Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced raman scanning microscopy, The Journal of Physical Chemistry B, 107 (2003) 1574-1584.
  51. B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne, SERS: materials, applications, and the future, Materials Today, 15 (2012) 16-25.
  52. B. Pettinger, Single-molecule surface- and tip-enhanced raman spectroscopy, Molecular Physics, 108 (2010) 2039.
  53. B.S. Yeo, J. Stadler, T. Schmid, R. Zenobi, W. Zhang, Tip-enhanced raman spectroscopy - its status, challenges and future directions, Chemical Physics Letters, 472 (2009) 1.
  54. T. Schmid, L. Opilik, C. Blum, R. Zenobi, Nanoscale chemical imaging using tip-enhanced raman spectroscopy: a critical review, Angewandte Chemie International Edition, 52 (2013) 5940-5954.
  55. A. Kudelski, Analytical applications of raman spectroscopy, Talanta, 76 (2008) 1-8.
  56. R.M. Stockle, Y.D. Suh, V. Deckert, R. Zenobi, Nanoscale chemical analysis by tip-enhanced raman spectroscopy, Chemical Physics Letters, 318 (2000) 131.
  57. B.S. Yeo, T. Schmid, J. Stadler, R. Zenobi, E. Amstad, Nanoscale probing of a polymer-blend thin film with tip-enhanced raman spectroscopy, Small, 5 (2009) 952.
  58. N. Jiang, E.T. Foley, J.M. Klingsporn, M.D. Sonntag, N.A. Valley, J.A. Dieringer, T. Seideman, G.C. Schatz, M.C. Hersam, R.P. Van Duyne, Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced raman spectroscopy combined with molecular-resolution scanning tunneling microscopy, Nano Letters, 12 (2012) 5061.
  59. N. Mauser, A. Hartschuh, Tip-enhanced near-field optical microscopy, Chemical Society Reviews, 43 (2014) 1248-1262.
  60. N. Kumar, S. Mignuzzi, W. Su, D. Roy, Tip-enhanced raman spectroscopy: principles and applications, EPJ Techniques & Instrumentation, 2 (2015) 1-23.
  61. K.J. Baldwin, D.N. Batchelder, Confocal raman microspectroscopy through a planar interface, Applied Spectroscopy, 55 (2001) 517-524.
  62. T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, J.P. Remon, Applications of raman spectroscopy in pharmaceutical analysis, TrAC Trends in Analytical Chemistry, 21 (2002) 869-877.
  63. S. Thomas, R. Thomas, A.K. Zachariah, R. Kumar, Spectroscopic methods for nanomaterials characterization, Elsevier, 2017.
  64. N. Everall, Depth profiling with confocal raman microscopy, Part I., Spectroscopy, 19 (2004) 22-27.
  65. N. Everall, Depth profiling with confocal Raman microscopy, part II, Spectroscopy, 19 (2004) 16-27.
  66. J.W. Chan, A.P. Esposito, C.E. Talley, C.W. Hollars, S.M. Lane, T. Huser, Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers raman spectroscopy, Analytical Chemistry. 76 (2004) 599-603.
  67. A.P. Esposito, C.E. Talley, T. Huser, C.W. Hollars, C.M. Schaldach, S.M. Lane, Analysis of single bacterial spores by micro-raman spectroscopy, Applied Spectroscopy, 57 (2003) 868-871.
  68. C.J.H. Brenan, I.W. Hunter, Volumetric raman microscopy through a turbid medium, Journal of Raman Spectroscopy 27 (1996) 561-570.
  69. M. Etienne, M. Dossot, J. Grausem, G. Herzog, Combined raman microspectrometer and shearforce regulated SECM for corrosion and self-healing analysis, Analytical Chemistry, 86 (2014) 11203.
  70. A. Bereczki, J. Dipold, A.Z. Freitas, N.U. Wetter, Sub-10 nm nanoparticle detection using multi-technique-based micro-raman spectroscopy, Polymers, 15 (2023).
  71. S.M. Hu, Stress-related problems in silicon technology, Journal of Applied Physics, 70 (1991) R53-R80.
  72. S.S. Kim, S.K. Yong, W. Kim, S. Kang, H.W. Park, K.J. Yoon, D.S. Sheen, S. Lee, C.S. Hwang, Review of semiconductor flash memory devices for material and process issues, Advanced Materials, 35 (2023) 2200659.
  73. N. Ranganathan, D.Y. Lee, L. Youhe, G.Q. Lo, K. Prasad, K.L. Pey, Influence of Bosch etch process on electrical isolation of TSV structures, IEEE Transactions on Components, Packaging and Manufacturing Technology, 1 (2011) 1497-1507.
  74. A. Jourdain, F. Schleicher, J. De Vos, M. Stucchi, E. Chery, A. Miller, G. Beyer, G. Van Der Plas, E. Walsby, K. Roberts, H. Ashraf, D. Thomas, E. Beyne, Extreme wafer thinning and nano-TSV processing for 3D heterogeneous integration, in: proceedings - electronic components and technology conference, Institute of Electrical and Electronics Engineers, (2020) 42-48.
  75. Y. Kang, Y. Qiu, Z. Lei, M. Hu, An application of raman spectroscopy on the measurement of residual stress in porous silicon, Optics and Lasers in Engineering, 43 (2005) 847-855.
  76. T. Tada, V. Poborchii, T. Kanayama, Study of stress distribution in a cleaved Si shallow trench isolation structure using confocal micro-raman system, Journal of Applied Physics, 107 (2010)
  77. D. Kosemura, M. Hattori, T. Yoshida, T. Mizukoshi, A. Ogura, Evaluation of stress and crystal quality in Si during shallow trench isolation by UV-raman spectroscopy, Journal of Electronic Materials, 39 (2010) 694-699.
  78. E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollak, M. Cardona, Effect of static uniaxial stress on the raman spectrum of silicon, Solid State Communications, 88 (1993) 1053-1058.
  79. S. Ganesan, A.A. Maradudin, J. Oitmaa, A lattice theory of morphic effects in crystals of the diamond structure, Annals of Physics, 56 (1970) 556-594.
  80. S. Schoeche, D. Schmidt, M. Cheng, A. Cepler, A.A. de la Pena, J. Oakley, TSV stress evolution mapping using in-line Raman spectroscopy, in: Metrology, Inspection, and Process Control XXXVII, SPIE, (2023) 69-78.
  81. T. Uchida, T. Masuyama, R. Sugie, S. Watanabe, Theoretical and experimental raman study for mechanical stress in die-attach process, Microelectronics Reliability, 121 (2021) 114132.
  82. N.H. Nickel, P. Lengsfeld, I. Sieber, Raman spectroscopy of heavily doped polycrystalline silicon thin films, Physical Review B, 61 (2000) 15558.
  83. J. Geurts, Raman spectroscopy from buried semiconductor interfaces: structural and electronic properties, Physica Status Solidi (b), 252 (2015) 19-29.
  84. M.P. Halsall, D. Wolverson, J.J. Davies, B. Lunn, D.E. Ashenford, Ga2Te3 and tellurium interfacial layers in ZnTe/ GaSb heterostructures studied by raman scattering, Applied Physics Letters, 60 (1992) 2129-2131.
  85. J. Geurts, Raman spectroscopy from buried semiconductor interfaces: Structural and electronic properties, Physica Status Solidi (B) Basic Research, 252 (2015) 19-29.
  86. J.L. Guyaux, R. Sporken, R. Caudano, V. Wagner, J. Geurts, N. Esser, W. Richter, Epitaxial growth of GaSb (111) on Sb (111) by interdiffusion assisted molecular beam epitaxy, Surface Science, 338 (1995) 204-210.
  87. V. Wagner, W. Richter, J. Geurts, Temperature dependence of interdiffusion-induced III-V compound formation at the interface between Al, Ga, In layers and Sb substrates, Applied Surface Science, 104 (1996) 580-585.
  88. T.A. El-Brolossy, H. Talaat, Raman spectroscopic studies of ZnSe/GaAs interfaces, Journal of Raman Spectroscopy, 39 (2008) 91-94.
  89. D.B. Laks, C.G. Van de Walle, G.F. Neumark, P.E. Blochl, S.T. Pantelides, Native defects and self-compensation in ZnSe, Physical Review B, 45 (1992) 10965.
  90. D.T. Hon, W.L. Faust, Dielectric parameterization of raman lineshapes for GaP with a plasma of charge carriers, Applied Physics, 1 (1973) 241-256.
  91. G.S. Belo, F. Nakagomi, A. Minko, S.W. Da Silva, P.C. Morais, D.A. Buchanan, Phase transition in sputtered HfO 2 thin films: a qualitative raman study, Applied Surface Science, 261 (2012) 727-729.
  92. H.J. Shim, J.S. Kim, W. Da Ahn, J.H. Choe, D. Oh, K.S. Kim, S.C. Lee, S.G. Pyo, Heterogeneous crystallinity of atomic-layer-deposited Zinc oxide thin film using resonance raman scattering analysis, Electronic Materials Letters, 17 (2021) 362-368.
  93. J. Wang, H. Tu, W. Zhu, Q. Zhou, A. Liu, C. Zhang, A comparative raman spectroscopy study on silicon surface in HF, HF/H2O2 and HF/NH4F aqueous solutions, Materials Science and Engineering: B, 72 (2000) 193-196.
  94. S. Patzig-Klein, G. Roewer, E. Kroke, New insights into acidic wet chemical silicon etching by HF/H2O-NOHSO4-H2SO4 solutions, Materials Science in Semiconductor Processing, 13 (2010) 71-79.
  95. K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry, John Wiley & Sons, (2009)
  96. S. Patzig, G. Roewer, E. Kroke, I. over, NOHSO4/HF-A novel etching system for crystalline silicon, Zeitschrift Fur Naturforschung B, 62 (2007) 1411-1421.
  97. G.W. Lee, Y.B. Lee, D.H. Baek, J.G. Kim, H.S. Kim, Raman scattering study on the influence of e-beam bombardment on si electron lens, Molecules, 26 (2021).