• Title/Summary/Keyword: Configuration control

Search Result 1,810, Processing Time 0.042 seconds

ATTITUDE AND CONFIGURATION CONTROL OF FLEXIBLE MULTI-BODY SPACECRAFT

  • Choi, Sung-Ki;Jone, E.;Cochran, Jr.
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.107-122
    • /
    • 2002
  • Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems ad-dressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.

Complete Identification of Isotropic Configurations of a Caster Wheeled Mobile Robot with Nonredundant/Redundant Actuation

  • Kim Sung-Bok;Moon Byung-Kwon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.486-494
    • /
    • 2006
  • In this paper, we present the complete isotropy analysis of a caster wheeled omnidirectional mobile robot (COMR) with nonredundant/redundant actuation. It is desirable for robust motion control to keep a COMR close to the isotropy but away from the singularity as much as possible. First, with the characteristic length introduced, the kinematic model of a COMR is obtained based on the orthogonal decomposition of the wheel velocities. Second, a general form of the isotropy conditions of a COMR is given in terms of physically meaningful vector quantities which specify the wheel configuration. Third, for all possible nonredundant and redundant actuation sets, the algebraic expressions of the isotropy conditions are derived so as to identify the isotropic configurations of a COMR. Fourth, the number of the isotropic configurations, the isotropic characteristic length, and the optimal initial configuration are discussed.

Interference Reduction Scheme for Mobile WiMAX in an Indoor environment (실내 환경의 Mobile WiMAX 시스템을 위한 간섭 완화 기술에 대한 연구)

  • Oh, Yong-Il;Ha, Kwang-Jun;Koo, Sung-Wan;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.454-458
    • /
    • 2008
  • This article describes an interference reduction scheme for Mobile WiMAX in an indoor environment. The feasibility of user deployed femtocells in the same frequency channel as an existing macro cell network is investigated. One of the important requirements for co-channel operation of femtocells such as auto-configuration and self optimization are discussed. In femtocell deployments, leakage of the pilot signal to the outside of a house can result of the higher number of mobility events caused by passing user of macrocell. This interference effect can be minimized by reducing the pilot power using proper scheme. This paper introduces existing auto-configuration method of power control and proposed interference reduction scheme using power control for Mobile WiMAX in an indoor environment.

  • PDF

A Comparative Study on the Dynamic Characteristics and Control Performances of Hybrid Mounts According to Element Configuration (배치형식에 따른 복합형 마운트의 동특성 및 제어성능에 대한 비교연구)

  • Cho, H.Y.;Moon, S.J.;Shin, Y.H.;Jung, W.J.;Won, M.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.556-563
    • /
    • 2012
  • This study focuses on the element configuration of hybrid mounts which are combined with passive elements and active elements. The seven configurations are presented according to connection of an active element to a passive element. The dynamic characteristics and control performance of them are investigated qualitatively using Bode plots. With reference to the transmitted force from internal to external, three cases are selected. In addition, some numerical simulations for the three cases are carried out to confirm the performance quantitatively. Based on this research results, a novel hybrid mount with excellent performance will be able to be developed.

Indirect Configuration Control of Embedded Swarm System Based on Human-Swarm Interaction (임베디드 군집 시스템의 상호작용 기반 간접적 군집 구성 제어)

  • Byun, Heejung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 2019
  • Embedded swarm systems consist of a large number of robots that use local control laws based on spatial information nearby environment and adjacent robots. In this paper, we propose a new scheme for indirect swarm configuration in swarm interaction system to adapt the swarm operation according to the desired goal. Also, we provide a method for the operator to observe the state of the swarm, which results in providing appropriate input to the swarm. We analyze the stability properties of the proposed swarm system and show the simulation results.

Design Criteria and Cluster Configuration Improvement of Single Gimbal Control Moment Gyros for Satellite (인공위성을 위한 제어모멘트자이로의 설계시 고려요소 및 배치형상 개선방안)

  • Seo, Hyun-Ho;Rhee, Seung-Wu;Lee, Seon-Ho;Oh, Shi-Hwan;Yim, Jo-Ryeong;Yong, Ki-Lyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.48-56
    • /
    • 2008
  • Nowadays, CMG(Control Moment Gyros) becomes one of the essential actuators for satellite attitude control. The method to define the key requirements of CMG is suggested to avoid CMG's singularity problem for the limited envelope of angular momentum of 2H. Furthermore, the analysis and simulation are carried out to provide a necessary guideline when three CMGs are used for spacecraft control purpose. An improved configuration of redundant four CMG cluster, slightly different from the conventional configuration, is proposed not only to avoid the CMG singularity problem, but to improve agility about roll or pitch-axis.

A Study on Improvement of Aircraft Handling Quality for Asymmetric Loading Configuration from Flight Test (비행시험을 통한 비대칭 무장 형상의 조종성 개선에 관한 연구)

  • Kim Chong-Sup;Hwang Byung-Moon;Kim Seung-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.713-718
    • /
    • 2006
  • Supersonic jet fighter aircraft have several different weapon loading configuration to support air-to-air combat and air-to-ground delivery of weapon modes. Especially, asymmetric loading configurations could result in decreased handling qualities for the pilot maneuvering of the aircraft. The design of the T-50 lateral-directional roll axis control laws change from beta-betadot feedback structure to simple roll rate feedback structure and gains such as F-16 in order to improve roll-off phenomena during pitch maneuver in asymmetric loading configuration. Consequently, it is found that the improved control law decreases the roll-off phenomenon in lateral axes during pitch maneuver, but initial roll response is very fast and wing pitching moment is increased. In this paper, we propose the lateral control law blending between beta-betadot and simple roll rate feedback system in order to decreases the roll-off phenomenon in lateral axes during pitch maneuver without degrading of roll performance.

Tire Industry and Its Manufacturing Configuration

  • Lee, Young-Sik;Cpim;Lee, Jin-Kyu
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.135-138
    • /
    • 2000
  • This paper is intended to propose what manufacturing configuration (manufacturing planning and shop floor control) is suitable for the tire industry. Basically tire-manufacturing process is mixed-products, parallel-disconnected-flow-shop. Both throughput time and cycle tine are very short, the variety of tires is very high, the setup time is long, shop floor data reporting requirements is high, and there are many equipments and people working. And with no exception, tire industry also now confronts increasing requirements of delivery conformance with the above peculiar characteristics of tire manufacturing and changing market environments, this paper suggests, weekly master scheduling with no MRP is desirable and traditional kanban is right selection for shop floor control/scheduling. This paper describes why this configuration should be, using the manufacturing engineering principles and some new insights like four primitives of parallel flow shop. Generally known that shop with high parallel-product-mix and long setup time isn't good candidate for kanban. The four primitives of parallel flow shop explain why kanban is also useful scheduling technique in that environment.

  • PDF

Upper-Stage Launch Vehicle Servo Controller Design Considering Optimal Thruster Configuration (상단 발사체 추력기 최적 배치 연구)

  • Hwang,Tae-Won;Tak,Min-Je;Bang,Hyo-Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.55-63
    • /
    • 2003
  • An attitude control system using reaction thrusters for the upper stage of a launch vehicle is considered. The thruster configuration (position and direction) determines control system response, fuel consumption, effective torque and system fault tolerance. We propose a procedure for finding the optimal thruster configuration with desired control effectiveness over the range of selected torque commands. An optimization technique called Particle Swarm Optimization is used for the numerical experiments. The validity of the solution is checked through computer simulations.

Generalized optimal active control algorithm with weighting matrix configuration, stability and time-delay

  • Cheng, Franklin Y.;Tian, Peter
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.119-135
    • /
    • 1993
  • The paper presents a generalized optimal active control algorithm for earthquake-resistant structures. The study included the weighting matrix configuration, stability, and time-delays for achieving control effectiveness and optimum solution. The sensitivity of various time-delays in the optimal solution is investigated for which the stability regions are determined. A simplified method for reducing the influence of time-delay on dynamic response is proposed. Numerical examples illustrate that the proposed optimal control algorithm is advantageous over others currently in vogue. Its feedback control law is independent of the time increment, and its weighting matrix can be flexibly selected and adjusted at any time during the operation of the control system. The examples also show that the weighting matrix based on pole placement approach is superior to other weighting matrix configurations for its self-adjustable control effectiveness. Using the time-delay correction method can significantly reduce the influence of time-delays on both structural response and required control force.