• Title/Summary/Keyword: Configuration Variables

Search Result 233, Processing Time 0.036 seconds

A Study on Spatial Structure Analysis for Comprehensive Rural Clustered Villages Development Area using the Space Syntax Method Technique (Space Syntax를 이용한 농촌마을종합개발사업 권역의 공간구조분석에 관한 연구)

  • Lee, Haeng-Wook;Kim, Young-Joo;Choi, Soo-Myung
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.4 s.25
    • /
    • pp.19-28
    • /
    • 2004
  • In order to revitalize rural areas fundamentally through multifunctional utilization of their resources, it should be necessary to prepare the rational development plan to the areal characteristics and conditions, and the first priority of its planning works should be given to spatial planning. The space syntax method, a powerful objective and quantitative analysis tool on the relationship between social and spatial characteristics, was introduced in this study. Five Comprehensive Rural Clustered Villages Development Areas in the Jeonnam-province were selected as case study areas, of which total area's and included villages' spatial variables were measured and analyzed. Rural villages analyzed in this study have the spatial structure badly systematized and much complicated, which results from low integration and deep spatial depth of them. And, by virtue of relatively many axial lines, there should be few differences between villages in terms of local integration, connectivity and control, while being significant difference in terms of global integration showing the whole areal characteristics. Intelligibility, the correlation coefficient between connectivity(local variable) and integration(global one) is low, which means that the spatial structure of the study areas is difficult for visitors to understand the area or village well. Spatial configuration analysis results in the case study areas showed that each development area has a unique spatial structure and is differentiated in terms of not only local spatial variables but also global spatial variables. Therefore, global and local characteristics should be considered in spatial analysis of development areas.

Prediction of Asphalt Pavement Service Life using Deep Learning (딥러닝을 활용한 일반국도 아스팔트포장의 공용수명 예측)

  • Choi, Seunghyun;Do, Myungsik
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.57-65
    • /
    • 2018
  • PURPOSES : The study aims to predict the service life of national highway asphalt pavements through deep learning methods by using maintenance history data of the National Highway Pavement Management System. METHODS : For the configuration of a deep learning network, this study used Tensorflow 1.5, an open source program which has excellent usability among deep learning frameworks. For the analysis, nine variables of cumulative annual average daily traffic, cumulative equivalent single axle loads, maintenance layer, surface, base, subbase, anti-frost layer, structural number of pavement, and region were selected as input data, while service life was chosen to construct the input layer and output layers as output data. Additionally, for scenario analysis, in this study, a model was formed with four different numbers of 1, 2, 4, and 8 hidden layers and a simulation analysis was performed according to the applicability of the over fitting resolution algorithm. RESULTS : The results of the analysis have shown that regardless of the number of hidden layers, when an over fitting resolution algorithm, such as dropout, is applied, the prediction capability is improved as the coefficient of determination ($R^2$) of the test data increases. Furthermore, the result of the sensitivity analysis of the applicability of region variables demonstrates that estimating service life requires sufficient consideration of regional characteristics as $R^2$ had a maximum of between 0.73 and 0.84, when regional variables where taken into consideration. CONCLUSIONS : As a result, this study proposes that it is possible to precisely predict the service life of national highway pavement sections with the consideration of traffic, pavement thickness, and regional factors and concludes that the use of the prediction of service life is fundamental data in decision making within pavement management systems.

The Spatial Performance of Multi-Level Shopping Clusters A Case Study of Nanshan Commercial Cultural District

  • Haofeng, Wang;Yupeng, Zhang;Xiaojun, Rao
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.149-163
    • /
    • 2017
  • With the intensification of urban development in Chinese cities, mixed land use in urban centers extends vertically into 3-D and expands its scale from a single building to commercial clusters. The multi-level pedestrian system in city centers also changed its role from one of traffic isolation to spatial integration, where transit nodes, street sidewalks, squares, building entrances, atriums, and corridors are interconnected, both horizontally and vertically, into a whole spatial system, within which pedestrian flows are guided and shopping facilities are arranged. This paper uses spatial configuration analysis of space syntax to examine the impacts of spatial patterns on movement distribution and the business performance of tenant mix in the multi-level commercial system of the Nanshan Commercial Cultural District in Shenzhen, China. The key objective is to better understand the interactions between the socio-economic variables and spatial design parameters of a shopping complex. The research findings point to the importance of multiplicity between syntactic variables and other spatial variables in influencing the pedestrian flows, business performance and tenant mix in highly complex commercial systems. Particularly noteworthy is the relationship between spatial accessibility measures and the location of escalators, and the ways in which individual commercial buildings are embedded into the overall spatial system. The study suggests that this may lead to the preliminary identification of the spatial qualities of effective vertical extensions of mixed land use in a high-density urban settings.

Sensitivity analysis of input variables to establish fire damage thresholds for redundant electrical panels

  • Kim, Byeongjun;Lee, Jaiho;Shin, Weon Gyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.84-96
    • /
    • 2022
  • In the worst case, a temporary ignition source (also known as transient combustibles) between two electrical panels can damage both panels. Mitigation strategies for electrical panel fires were previously developed using fire modeling and risk analysis. However, since they do not comply with deterministic fire protection requirements, it is necessary to analyze the boundary values at which combustibles may damage targets depending on various factors. In the present study, a sensitivity analysis of input variables related to the damage threshold of two electrical panels was performed for dimensionless geometry using a Fire Dynamics Simulator (FDS). A new methodology using a damage evaluation map was developed to assess the damage of the electrical panel. The input variables were the distance between the electrical panels, the vertical height of the fuel, the size of the fire, the wind speed and the wind direction. The heat flux was determined to increase as the vertical distance between the fuel and the panel decreased, and the largest heat flux was predicted when the vertical separation distance divided by one half flame length was 0.3-0.5. As the distance between the panels increases, the heat flux decreases according to the power law, and damage can be avoided when the distance between the fuel and the panel is twice the length of the panel. When the wind direction is east and south, to avoid damage to the electrical panel the distance must be increased by 1.5 times compared to no wind. The present scale model can be applied to any configuration where combustibles are located between two electrical panels, and can provide useful guidance for the design of redundant electrical panels.

A Study of Unlubricated Sliding wear of materials as hardness difference (경도의 차이에 따른 재료들의 비윤활 미끄럼 마모에 대한 연구)

  • Kim, Jung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.369-376
    • /
    • 2004
  • It is shown that the rate of wear can be related to on 'index of wear intensity'. Since both upper and lower specimens have used the same hardness values, equivalent hardness of 'index of wear intensity' used the mean hardness value of specimens. This index is derived from the external variables of load, sliding speed and the hardness of the sliding pairs. The wear behavior as the hardness of the sliding elements on the dry wear has been investigated using a disc on disc configuration. The materials of the specimens are used as ten kinds along their hardness. Using experimental data, we figured the relationship between wea rate and index of wear intensity. The result had been derived a newly wear equation in disc on disc wear system.

  • PDF

The Relationship of Complexity and Order in Determining Aesthetic Preference in Architectural Form

  • Whang, Hee-Joon
    • Architectural research
    • /
    • v.13 no.4
    • /
    • pp.19-30
    • /
    • 2011
  • This investigation, based on empirical research, examined the role of complexity and order in the aesthetic experience of architectural forms. The basic assumption of this study was that perception in architectural form is a process of interpreting a pattern in a reductive way. Thus, perceptual arousal is not determined by the absolute complexity of a configuration. Rather, the actual perceived complexity is a function of the organization of the system (order). In addition, complexity and order were defined and categorized into four variables according to their significant characteristics; simple order, complex order, random complexity, and lawful complexity. The series of experiments confirmed that there is a point on the psychological complexity dimension which is optimal. By demonstrating that consensual and individual aesthetic preference can be measured to have a unimodal function of relationship with complexity, the results of the experiments indicated that complexity and orderliness are effective design factors for enhancing aesthetics of a building facade. This investigation offered a conceptual framework that relates the physical (architectural form) and psychological factors (complexity and order) operating in the aesthetic experience of building facades.

Simulation Study of Discrete Event Systems using Fast Approximation Method of Single Run and Optimization Method of Multiple Run (단일 실행의 빠른 근사해 기법과 반복 실행의 최적화 기법을 이용한 이산형 시스템의 시뮬레이션 연구)

  • Park, Kyoung Jong;Lee, Young Hae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • This paper deals with a discrete simulation optimization method for designing a complex probabilistic discrete event simulation. The developed algorithm uses the configuration algorithm that can change decision variables and the stopping algorithm that can end simulation in order to satisfy the given objective value during single run. It tries to estimate an auto-regressive model for evaluating correctly the objective function obtained by a small amount of output data. We apply the proposed algorithm to M/M/s model, (s, S) inventory model, and known-function problem. The proposed algorithm can't always guarantee the optimal solution but the method gives an approximate feasible solution in a relatively short time period. We, therefore, show the proposed algorithm can be used as an initial feasible solution of existing optimization methods that need multiple simulation run to search an optimal solution.

Flexural Strength and Ductility of High-Strength R/C Columns subjected to Earthquake Loadings (지진하중을 받는 고강도 콘크리트 기둥의 휨강도와 연성)

  • 박관식;황선경;한병찬;성수용;윤현도;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.145-150
    • /
    • 2001
  • With the increase in the use of High-Strength Concrete(HSC) despite the its weakness like brittle characteristic, it is important to improve the performance of HSC columns, nowadays. Therefore, it is common to use higher strength steel in HSC for the purpose of ductility and strength improvement. This experimental study was set up to investigate the inelastic behavior of HSC(700kg/$cm^{2}$) columns subjected to combined axial and repeated lateral loads. Effects of key variables such as the volumetric ratio of transverse reinforcement, tie configuration and tie yield strength are studied in this research program. Test results indicate that inelastic response of HSC columns improve with proper confinement of core concrete. Increasing the amount of transverse reiuorement results in increased ductility.

  • PDF

Multi-scale Simulation on the Mechanical Behavior of Multi-walled Carbon Nanotubes (다중벽 탄소나노튜브의 역학적 거동에 관한 멀티스케일 전산모사)

  • Park, Jong-Youn;Cho, Young-Sam;Kim, Sung-Youb;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.400-403
    • /
    • 2004
  • We present a coarse-graining model to describe the mechanical behaviors of multi-walled carbon nanotubes. To find the atomic configuration in membrane-like nanostructure i.e. carbon nanotube, we employ interpolation functions and the associated element-variables that are defined in the subdivided region. Tersoff-Brenner potential is adopted for interaction of bonded atoms and also van der Waals force for non-bonded interaction. Moreover, we simulate the coarse-graining multi-walled carbon nanotubes with defects and its result is compared with that of perfect multi-walled carbon nanotubes.

  • PDF

Compensator Design to Improve the Dynamic Performance of Piezoelectric Actuators (압전 구동 소자의 동적 성능 향상을 위한 보상기의 설계)

  • 문준희;강성범;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.505-507
    • /
    • 2004
  • This paper attempts to compensate the nonlinearity between the input voltage and the output displacement of the piezoelectric stack in dynamic actuation by the following two ways. Firstly, the charge steering by circuit configuration reduces the hysteresis of piezoelectric actuator remarkably. However, it makes the ripple in positioning due to the phase lag and noise induced from the elements of the long closed loop. Secondly, the feedforward control by neural network compensates the hysteresis of the piezoelectric actuators effectively with the appropriate selection of the input variables for the training. The improvement of the dynamic performance of the piezoelectric actuators by the developed linearization technique is verified by experiments.

  • PDF