• 제목/요약/키워드: Configuration Variables

검색결과 233건 처리시간 0.028초

Effects of Transverse Reinforcement on Strength and Ductility of High-Strength Concrete Columns

  • Hwang, Sun Kyoung;Lim, Byung Hoon;Kim, Chang Gyo;Yun, Hyun Do;Park, Wan Shin
    • Architectural research
    • /
    • 제7권1호
    • /
    • pp.39-48
    • /
    • 2005
  • Main objective of this research is to evaluate performance of high-strength concrete (HSC) columns for ductility and strength. Eight one-third scale columns with compressive strength of 69 MPa were subjected to a constant axial load corresponding to 30 % of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (${\rho}_s=1.58$, 2.25 %), tie configuration (Type H, Type C and Type D) and tie yield strength ($f_{yh}=549$ and 779 MPa). Test results show that the flexural strength of every column exceeds the calculated flexural capacity based on the equivalent concrete stress block used in the current design code. Columns with 42 % higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour, showing a displacement ductility factor (${\mu}_{{\Delta}u}$) of 3.69 to 4.85, and a curvature ductility factor (${\mu}_{{\varphi}u}$) of over 10.0. With an axial load of 30 % of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 549 MPa.

The Comparison of the Classical Keplerian Orbit Elements, Non-Singular Orbital Elements (Equinoctial Elements), and the Cartesian State Variables in Lagrange Planetary Equations with J2 Perturbation: Part I

  • Jo, Jung-Hyun;Park, In-Kwan;Choe, Nam-Mi;Choi, Man-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권1호
    • /
    • pp.37-54
    • /
    • 2011
  • Two semi-analytic solutions for a perturbed two-body problem known as Lagrange planetary equations (LPE) were compared to a numerical integration of the equation of motion with same perturbation force. To avoid the critical conditions inherited from the configuration of LPE, non-singular orbital elements (EOE) had been introduced. In this study, two types of orbital elements, classical Keplerian orbital elements (COE) and EOE were used for the solution of the LPE. The effectiveness of EOE and the discrepancy between EOE and COE were investigated by using several near critical conditions. The near one revolution, one day, and seven days evolutions of each orbital element described in LPE with COE and EOE were analyzed by comparing it with the directly converted orbital elements from the numerically integrated state vector in Cartesian coordinate. As a result, LPE with EOE has an advantage in long term calculation over LPE with COE in case of relatively small eccentricity.

FPSO Riser 지지 구조의 강도설계에 대한 위상최적화 응용 (An Application of Topology Optimization for Strength Design of FPSO Riser Support Structure)

  • 송창용;정준모;심천식
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.153-160
    • /
    • 2010
  • This paper deals with the topology optimized design of the riser support structures for floating production storage and offloading units (FPSOs) under global and local loading conditions. For a preliminary study and validation of the numerical approach, a simplified plate under static loading is first evaluated with the representative topology optimization methods, the Homogenization Design Method (HDM) and Density Method (DM) or Simple Isotropic Material with Penalization (SIMP). In the context of the corresponding riser support structures, the design problem is formulated such that structure shapes based on design domain variables are determined by minimizing the compliance subject to a mass target, considering the stress criterion. An initial design model is generated based on an actual FPSO riser support configuration. The topology optimization results present improved design performances under various loading conditions, while staying within the allowable limit of the offshore area.

Design of Heat-Activated Reversible Integral Attachments for Product-Embedded Disassembly

  • Li, Ying;Kikuchi, Noboru;Saitou, Kazuhiro
    • International Journal of CAD/CAM
    • /
    • 제3권1_2호
    • /
    • pp.19-29
    • /
    • 2003
  • Disassembly is a fundamental process needed for component reuse and material recycling in all assembled products. Integral attachments, also known as 'snap' fits, are favored fastening means in design for assembly (DFA) methodologies, but not necessarily a favored choice for design for disassembly. In this paper, design methods of a new class of integral attachments are proposed, where the snapped joints can be disengaged by the application of localized heat sources. The design problem of reversible integral attachments is posed as the design of compliant mechanisms actuated with localized thermal expansion of materials. Topology optimization technique is utilized to obtain conceptual layout of snap-fit mechanisms that realizes a desired deformation of snapped features for joint release. Two design approaches are attempted and design results of each approach are presented, where the geometrical configuration extracted from optimal topologies are simplified to enhance the manufacturability for the conventional injection molding technologies. To maximize the magnitude of deformation, a design scheme has been proposed to include boundary conditions as design variables. Final designs are verified using commercial software for finite element analysis.

Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

  • Fynan, Douglas A.;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.684-701
    • /
    • 2016
  • The Gaussian process model (GPM) is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU) and Level 1 probabilistic safety assessment (PSA) success criteria definitions while dealing with a large number of uncertainties.

군수품 특성을 고려한 품질만족도 모델 개발에 관한 연구 (A Study on Development of Quality Satisfaction Index Model for Military Goods)

  • 권세민;최석구;조경호;백승호;김용섭
    • 품질경영학회지
    • /
    • 제40권3호
    • /
    • pp.234-244
    • /
    • 2012
  • Purpose: In the private sector, many Customer Satisfaction Index Models have already been developed and are being applied in a variety of industries. In spite of continuously increasing of quality for military goods, measuring tools of Quality Satisfaction have not been developed yet. Method: In 2004, Defense Quality Assurance Agency and Seoul National University jointly developed MCSI(Military Customer Satisfaction Index) as a benchmark NCSI(National Customer Satisfaction Index), but it is limited to aply to military goods. We focused on product quality and developed MQSI(Military Quality Satisfaction Index) Model. Result: We propose a new Satisfaction Index Model(MQSI, Military Quality Satisfaction Index) that can be applied to military goods. Conclusion: In this study, configuration and variables of MQSI Model are described. Also the result of preliminary survey is briefly explained.

실내 소음제어를 위한 압전지능구조물의 최적 설계 (Optimal Design of a Piezoelectric Smart Structure for Cabin Noise Control)

  • 고범진;이중근;김재환;최승복;정재천
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.428-434
    • /
    • 1998
  • Optimal design of a piezoelectric smart structure is studied for cabin noise control. A cubic shaped acoustic cavity with a flat plate which covers one side is taken as the problem. The sensor signal is returned to the actuator through a negative gain. The acoustic cavity is modeled using the modal approach which represents the pressure fields in the cavity as a sum of mode shapes of the cavity with unknown coefficients. By using orthogonality of the mode shapes of the cavity, finite element equation for the structure with the influence of the acoustic cavity is derived. The objective function is the average pressure at a certain region, so-called silent zone, in the cavity and the design variables are the locations and sizes of the piezoelectirc actuator and sensor. The optimal design is performed at several frequencies and the results show a remarkable noise reduction. To see the robustness of the optimally designed result, the configuration is used to examine the noise reduction at different frequencies. By adjusting the gain at each frequencies, it is possible to reduce the noise in comparison with the result when the actuator is not activated.

  • PDF

알루미늄 합금 형재의 열간압출 금형설계 시스템 (A Design System of Dies for Hot Extrusion of Structural Shapes from Aluminum Alloys)

  • 조해용;김관우;최재찬
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.131-136
    • /
    • 2002
  • A design system of dies for hot extrusion of structural shapes such as Z's, L's, T's, U's and H's from aluminium alloys was developed in this study. The developed design system of dies is based of estimated die design rule system. The design rules for die design are obtained from the handbooks, plasticity theories and relevant references. The environment of the system is AutoCAD and AutoLISP, the graphic programming language was used for the configuration of the system. This system includes five major modules such as section shape design module, die opening number module, die opening layout module, die correction module and die bearing design module that are used to determine design variables. This system would be used to design of dies for hot extrusion from aluminum alloys and widely used in manufacturing course.

TFT/LCD 시스템 패키지 전기적 특성 분석 및 설계도구의 구현 (Development of a Tool for the Electrical Analysis and Design of TFT/LCD System Package)

  • 임호남;지용
    • 전자공학회논문지A
    • /
    • 제32A권12호
    • /
    • pp.149-158
    • /
    • 1995
  • This paper describes the development of a software tool LCD FRAME that may guide the analyzing process for the electrical characteristics and the design procedure for constructing the thin film transistor liquid crystal display(TFT/LCD) packages. LCD FRAME can analyze its electrical characteristics from the TFT/LCD system package configuration, and provide the design variables to meet the user's requirements. These analysis and design procedure can be done in real time according to the model at simplified package level of TFT/LCD. LCD_FRAME is an object-oriented expert system which considers package elements as objects. With this LCD_FRAME software tool, we analyzed the I-V characteristics of a-Si TFT and its signal distortion which has maximum 1.58 $\mu$s delay along the panel scan line of the package containing 480 ${\times}$ 240 pixels. We designed the package structure of maximum 6.35 $\mu$s signal delays and 3360 ${\times}$ 780 pixels, and as a result we showed that the proper structure of 20 $\mu$m scan line width, 60$\mu$m panel TFT gate width and 8 $\mu$m gate length. This LCD_FRAME software tool provides results of the analysis and the design in the form of input files of the SPICE program, text data files, and graphic charts.

  • PDF

A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder

  • Gao, Qiong;Yang, Meng-Gang;Qiao, Jian-Dong
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.567-577
    • /
    • 2017
  • The traditional design procedure of a prestressed concrete (PC) cable-stayed bridge is complex and time-consuming. The designers have to repeatedly modify the configuration of the large number of design parameters to obtain a feasible design scheme which maybe not an economical design. In order to efficiently achieve an optimum design for PC cable-stayed bridges, a multi-parameter optimization technique is proposed. In this optimization technique, the number of prestressing tendons in girder is firstly set as one of design variables, as well as cable forces, cable areas and cross-section sizes of the girders and the towers. The stress and displacement constraints are simultaneously utilized to ensure the safety and serviceability of the structure. The target is to obtain the minimum cost design for a PC cable-stayed bridge. Finally, this optimization technique is carried out by a developed PC cable-stayed bridge optimization program involving the interaction of the parameterized automatically modeling program, the finite element structural analysis program and the optimization algorithm. A low-pylon PC cable-stayed bridge is selected as the example to test the proposed optimization technique. The optimum result verifies the capability and efficiency of the optimization technique, and the significance to optimize the number of prestressing tendons in the girder. The optimum design scheme obtained by the application can achieve a 24.03% reduction in cost, compared with the initial design.