• Title/Summary/Keyword: Cone-beam

Search Result 976, Processing Time 0.029 seconds

Assessment of the Position of the Mandibular Foramen and Mandibular Lingula in Children and Adolescents using CBCT (소아 청소년에서 하악공 및 하악소설의 위치에 대한 CBCT 분석)

  • Lee, Jihye;Choi, Namki;Kim, Byunggee;Kim, Seonmi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.1
    • /
    • pp.64-76
    • /
    • 2021
  • The purpose of this study is to evaluate the position of the mandibular foramen and location and morphological characteristics of the mandibular lingula using Cone-Beam Computed Tomography (CBCT). Mandibular CBCT images of children aged 6 - 16 years were collected. A total of 180 patients were divided into 3 groups, 6 - 7, 10 - 11 and 15 - 16 years, with 30 male and female patients per group. Either side of the ramus was analyzed. The shortest distances from the anterior, posterior, superior and inferior border of the ramus to the mandibular lingula were measured. The shortest distance between the mandibular lingula and the mandibular foramen was also measured. The vertical distance from the mandibular lingula and the mandibular foramen to the occlusal plane was measured. The shapes of the mandibular lingula was classified into 4 types according to the criteria. The distances of the mandibular lingula from the anteroposterior and vertical reference points of the ramus increased in all directions with age. The distance between the mandibular lingula and the mandibular foramen also increased with age. The location of the mandibular lingula and the mandibular foramen in relation to the occlusal plane moved upwards with age. The most common shape of the mandibular lingula was triangular, followed by nodular, truncated and assimilated, and there was no difference in the shape according to age. It is recommended that the horizontal insertion point of the anesthesia from the anterior border of the ramus increased to 17 mm, 18 mm, and 19 mm according to the age groups. It is also suggested that the vertical insertion point increased by 2 - 3 mm, 5 - 6 mm and 9 - 10 mm above the occlusal plane according to the age groups.

Development of a prototype simulator for dental education (치의학 교육을 위한 프로토타입 시뮬레이터의 개발)

  • Mi-El Kim;Jaehoon Sim;Aein Mon;Myung-Joo Kim;Young-Seok Park;Ho-Beom Kwon;Jaeheung Park
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.257-267
    • /
    • 2023
  • Purpose. The purpose of the study was to fabricate a prototype robotic simulator for dental education, to test whether it could simulate mandibular movements, and to assess the possibility of the stimulator responding to stimuli during dental practice. Materials and methods. A virtual simulator model was developed based on segmentation of the hard tissues using cone-beam computed tomography (CBCT) data. The simulator frame was 3D printed using polylactic acid (PLA) material, and dentiforms and silicone face skin were also inserted. Servo actuators were used to control the movements of the simulator, and the simulator's response to dental stimuli was created by pressure and water level sensors. A water level test was performed to determine the specific threshold of the water level sensor. The mandibular movements and mandibular range of motion of the simulator were tested through computer simulation and the actual model. Results. The prototype robotic simulator consisted of an operational unit, an upper body with an electric device, a head with a temporomandibular joint (TMJ) and dentiforms. The TMJ of the simulator was capable of driving two degrees of freedom, implementing rotational and translational movements. In the water level test, the specific threshold of the water level sensor was 10.35 ml. The mandibular range of motion of the simulator was 50 mm in both computer simulation and the actual model. Conclusion. Although further advancements are still required to improve its efficiency and stability, the upper-body prototype simulator has the potential to be useful in dental practice education.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

Parotid Gland Sparing Radiotherapy Technique Using 3-D Conformal Radiotherapy for Nasopharyngeal CarcinomB (비인강암에서 방사선 구강 건조증 발생 감소를 위한 3차원 입체조형치료)

  • Lim Jihoon;Kim Gwi Eon;Keum Ki Chang;Suh Chang Ok;Lee Sang-wook;Park Hee Chul;Cho Jae Ho;Lee Sang Hoon;Chang Sei Kyung;Loh Juhn Kyu
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • Purpose : Although using the high energy Photon beam with conventional Parallel-opposed beams radiotherapy for nasopharyngeal carcinoma, radiation-induced xerostomia is a troublesome problem for patients. We conducted this study to explore a new parotid gland sparing technique in 3-D conformal radiotherapy (3-D CRT) in an effort to prevent the radiation-induced xerostomia. Materials and Methods : We peformed three different planning for four clinically node-negative nasopharyngeal cancer patients with different location of tumor(intracranial extension, nasal cavity extension, oropharyngeal extension, parapharyngeal extension), and intercompared the plans. Total prescription dose was 70.2 Gy to the isocenter. For plan-A, 2-D parallel opposing fields, a conventional radiotherapy technique, were employed. For plan-B, 2-D parallel opposing fields were used up until 54 Gy and afterwards 3-D non-coplanar beams were used. For plan-C, the new technique, 54 Gy was delivered by 3-D conformal 3-port beams (AP and both lateral ports with wedge compensator; shielding both superficial lobes of parotid glands at the AP beam using BEV) from the beginning of the treatment and early spinal cord block (at 36 Gy) was peformed. And bilateral posterior necks were treated with electron after 36 Gy. After 54 Gy, non-coplanar beams were used for cone-down plan. We intercompared dose statistics (Dmax, Dmin, Dmean, D95, DO5, V95, VOS, Volume receiving 46 Gy) and dose volume histograms (DVH) of tumor and normal tissues and NTCP values of parotid glands for the above three plans. Results : For all patients, the new technique (plan-C) was comparable or superior to the other plans in target volume isodose distribution and dose statistics and it has more homogenous target volume coverage. The new technique was most superior to the other plans in parotid glands sparing (volume receiving 46 Gy: 100, 98, 69$\%$ for each plan-A, B and C). And it showed the lowest NTCP value of parotid glands in all patients (range of NTCP; 96$\~$100$\%$, 79$\~$99$\%$, 51$\~$72$\%$ for each plan-A, B and C). Conclusion : We conclude that the new technique employing 3-D conformal radiotherapy at the beginning of radiotherapy and cone down using non-coplanar beams with early spinal cord block is highly recommended to spare parotid glands for node-negative nasopharygeal cancer patients.

  • PDF

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

Feasibility Study of Dose Evaluation of Stereotactic Radiosurgery using GafChromic $EBT^{(R)}$ Film (GafChromic $EBT^{(R)}$ 필름을 이용한 뇌정위방사선치료의 선량분석 가능성 평가)

  • Jang, Eun-Sung;Lee, Chul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • Purpose: We have performed SRS (stereotactic radiosurgery) for avm (arterry vein malformation) and brain cancer. In order to verify dose and localization of SRS, dose distributions from TPS ($X-Knife^{(R)}$ 3.0, Radionics, USA) and GafChromic $EBT^{(R)}$ film in a head phantom were compared. Materials and Methods: In this study, head and neck region of conventional humanoid phantom was modified by substituting one of 2.5 cm slap with five 0.5 cm acrylic plates to stack the GafChromic $EBT^{(R)}$ film slice by slice with 5 mm intervals. Four films and five acrylic plates were cut along the contour of head phantom in axial plane. The head phantom was fixed with SRS head ring and adapted SRS localizer as same as real SRS procedure. CT images of the head phantom were acquired in 5 mm slice intervals as film interval. Five arc 6 MV photon beams using the SRS cone with 2 cm diameter were delivered 300 cGy to the target in the phantom. Ten small pieces of the film were exposed to 0, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 cGy, respectively to calibrate the GafChromic $EBT^{(R)}$ film. The films in the phantom were digitized after 24 hours and its linearity was calibrated. The pixel values of the film were converted to the dose and compared with the dose distribution from the TPS calculation. Results: Calibration curve for the GafChromic $EBT^{(R)}$ film was linear up to 900 cGy. The R2 value was better than 0.992. Discrepancy between calculated from $X-Knife^{(R)}$ 3.0 and measured dose distributions with the film was less than 5% through all slices. Conclusion: It was possible to evaluate every slice of humanoid phantom by stacking the GafChromic EBT film which is suitable for 2 dimensional dosimetry, It was found that film dosimetry using the GafChromic $EBT^{(R)}$ film is feasible for routine dosimetric QA of stereotactic radiosurgery.

  • PDF

Anatomic Study of Pterygomaxillary Junctions in Koreans

  • Kim, Dong-Yul;Cho, Yeong-Cheol;Sung, Iel-Yong;Yun, Dae-Kawn;Kim, Min-Uk;Kim, Ji-Uk;Son, Hyung-Suck;Son, Jang-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.6
    • /
    • pp.368-375
    • /
    • 2013
  • Purpose: This study is to evaluate the location of descending palatine artery, the anatomy of pterygomaxillary junction, and the association between the obtained anatomic values and several variables. Methods: We studied 40 patients who were treated for dentofacial deformites from January 2010 to December 2012 in Ulsan University Hospital, Ulsan, Korea. Cone beam computed tomogram (CBCT) was done for all patients. The reference point was approximately 5 to 7 mm above anterior nasal spine on axial image. We evaluated the location of the greater palatine canal (line a: on the coronal view, the shortest line between the center of greater palatine canal and pterygoid fossa; distance a: the distance of line a). We also measured the thickness (line b: on the coronal view, the shortest line between maxillary posterior sinus wall and pterygoid fossa; distance b: distance of line b), width (line c: on the coronal view, the line perpendicular to the line b and the nearest line from the most concave point of lateral pterygoid plate to the medial pterygoid plate; distance c: distance of line c) and height (line d: on sagittal view, the vertically longest line of pterygoid junction; distance d: the distance of line d) in pterygomaxillary junctions. We evaluated the association between the obtained anatomic values and several variables (sex, age, height and weight). Results: The mean distance a was 4.78 mm, mean distance b was 5.53 mm, mean distance c was 8.01 mm and mean distance d was 13.22 mm. The differences between age and mean distance c and weight and mean distance d in pterygomaxillary junctions are statistically significant. Conclusion: There apparently is anatomic variation of pterygomaxillary junctions by various values, particularly weight and age in a Korean clinical population.

Optimizing Imaging Conditions in Digital Tomosynthesis for Image-Guided Radiation Therapy (영상유도 방사선 치료를 위한 디지털 단층영상합성법의 촬영조건 최적화에 관한 연구)

  • Youn, Han-Bean;Kim, Jin-Sung;Cho, Min-Kook;Jang, Sun-Young;Song, William Y.;Kim, Ho-Kyung
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.281-290
    • /
    • 2010
  • Cone-beam digital tomosynthesis (CBDT) has greatly been paid attention in the image-guided radiation therapy because of its attractive advantages such as low patient dose and less motion artifact. Image quality of tomograms is, however, dependent on the imaging conditions such as the scan angle (${\beta}_{scan}$) and the number of projection views. In this paper, we describe the principle of CBDT based on filtered-backprojection technique and investigate the optimization of imaging conditions. As a system performance, we have defined the figure-of-merit with a combination of signal difference-to-noise ratio, artifact spread function and floating-point operations which determine the computational load of image reconstruction procedures. From the measurements of disc phantom, which mimics an impulse signal and thus their analyses, it is concluded that the image quality of tomograms obtained from CBDT is improved as the scan angle is wider than 60 degrees with a larger step scan angle (${\Delta}{\beta}$). As a rule of thumb, the system performance is dependent on $\sqrt{{\Delta}{\beta}}{\times}{\beta}^{2.5}_{scan}$. If the exact weighting factors could be assigned to each image-quality metric, we would find the better quantitative imaging conditions.

Evaluation of Setup Usefulness of CBCT using Rando Phantom (인체 팬텀(Rando Phantom)을 이용한 CBCT의 Setup 유용성 평가)

  • Jang, Eun-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.7
    • /
    • pp.234-238
    • /
    • 2011
  • This paper will evaluate the usefulness of 3D target of CBCT by comparing human body's posture and position when simulated treatment is being carried out as well as human phantom posture and position using CBCT which is applying OBI. From the Rando Phantom which is located in the datum point moved in parallel and rotationary direction using CBCT. Then the mean and standard deviation difference on images location difference that are acquired were compared with real the Rando Phantom' moved distance. To make a plan of simulated treatment with the same procedure of real radiation therapy, we are going to setup the Rando Phantom. With an assumption that the position is set in accurate place, we measured the setup errors accroding to the change of the translation and rotation. Tests are repeated 10 times to get the standard deviation of the error values. The variability in couch shift after positioning equivalent to average residual error showed lateral $0.2{\pm}0.2$mm, longitudinal $0.4{\pm}0.3$mm, vertical $-0.4{\pm}0.1$mm. The average rotation erroes target localization after simulated $0.4{\pm}0.2$ mm, $0.3{\pm}0.3$ mm, and $0.3{\pm}0.4$ mm. The detection error by rotation is $0{\sim}0.6^{\circ}$ CBCT 3D/3D matching using the Rando Phantom minimized the errors by realizing accurate matching during simulated treatment and patient caring.

Quantitative Evaluation of Patient Positioning Error Using CBCT 3D Gamma Density Analysis in Radiotherapy

  • Lee, Soon Sung;Min, Chul Kee;Cho, Gyu Suk;Han, Soorim;Kim, Kum Bae;Jung, Haijo;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.149-155
    • /
    • 2017
  • Radiotherapy patients should maintain their treatment position as patient setup is very important for accurate treatment. In this study, we evaluated patient setup error quantitatively according to Cone-Beam Computed Tomography (CBCT) Gamma Density Analysis using Mobius CBCT. The adjusted setup error to the $QUASAR^{TM}$ phantom was moved artificially in the superior and lateral direction, and then we acquired the CBCT image according to the phantom setup error. To analyze the treatment setup error quantitatively, we compared values suggested in the CBCT system with the Mobius CBCT. This allowed us to evaluate the setup error using CBCT Gamma Density Analysis by comparing the planning CT with the CBCT. In addition, we acquired the 3D-gamma density passing rate according to the gamma density criteria and phantom setup error. When the movement was adjusted to only the phantom body or 3 cm diameter target inserted in the phantom, the CBCT system had a difference of approximately 1 mm, while Mobius CBCT had a difference of under 0.5 mm compared to the real setup error. When the phantom body and target moved 20 mm in the Mobius CBCT, there are 17.9 mm and 13.5 mm differences in the lateral and superior directions, respectively. The CBCT gamma density passing rate was reduced according to the increase in setup error, and the gamma density criteria of 0.1 g/cc/3 mm has 10% lower passing rate than the other density criteria. Mobius CBCT had a 2 mm setup error compared with the actual setup error. However, the difference was greater than 10 mm when the phantom body moved 20 mm with the target. Therefore, we should pay close attention when the patient's anatomy changes.