• Title/Summary/Keyword: Cone penetrometer

Search Result 97, Processing Time 0.024 seconds

Case Studies on the Field Application of Miniature CPT's in South Korea (소형콘관입시험(Miniature CPT)의 국내현장적용 사례분석)

  • Yoon, Sung-Soo;Hwang, Dae-Jin;Kim, Jun-Ou;Ji, Wan-Goo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.269-281
    • /
    • 2010
  • The cone penetration test(CPT) has been increasingly used for in situ site characterization. However, the use of CPT is often limited due to specific site conditions depending on the cone size, geometry, and capacity of the CPT system used. In South Korea, it has generally been considered that the CPT could be satisfactorily performed only in soft soils. Louisiana State University/ Louisiana Transportation Research Center has implemented a field-rugged continuous intrusion miniature cone penetration test (CIMCPT) system since the 1990s. The miniature cone penetrometer of the CIMCPT system has a cross-sectional cone area of $2cm^2$ allowing finer soil profiles compared to the standard $10cm^2$. The reduced cross-sectional area also enables a system capacity reduction leading to cost saving and ease in maintenance. In addition, the continuous intrusion mechanism allows fast and economic site investigations. Samsung C&T Corporation has recently implemented a similar CIMCPT system. In this study, case studies on the field application of Samsung CIMCPT system for the last 2 years are presented to illustrate its performance investigation and its usefulness and limitation. Results of the case studies show that the CIMCPT system can be applied to soils with cone tip resistance($q_c$) values up to about 30MPa and allows a reliable and useful way to characterize soft soils. The results also show that the rod buckling limits the investigation depth by the system and the large contact pressure of the CIMCPT truck prevents the use of the system at sites with soft surface soils. According to the results of the case studies, the Samsung CIMCPT system has been being upgraded with a miniature cone with a longer rod, a crawler-type transportation system, a pre-boring system, and so on.

  • PDF

Decision Method for Degree of Compaction of Subgrade Using Portable Cone Penetrometer (콘관입시험기에 의한 노상 다짐관리도 결정법)

  • 임유진;이현승;박영호;이기홍
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.161-168
    • /
    • 2003
  • 평판재하시험은 재하시험시 표층의 매우 잘 다져진 곳에 대한 지지력 계수를 획득하여 실다짐도를 과대 평가하는 결과를 초래할 수 있다. 이에 착안하여 응력도달 범위가 작은 평판재하시험을 지양하고 콘관입시험으로부터 획득되는 노상의 관입지수로부터 지반의 다짐도를 추정할 수 있는 콘관입시험기와 구동시스템 및 해석 프로그램을 개발하였다.

  • PDF

INVESTIGATION OF SUBSURFACE CAVITIES UNDER PAVEMENT STRUCTURES WITH DYNAMIC CONE PENETROMETER TESTS (동적관입시험(DCP TESTS)에 의한 포장체 하부구조내 공동(空洞)현상에 관한 조사)

  • 김종렬
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 1998
  • 이 논문은 포장체 하부구조내 공동(空洞)현상에 대한 위치를 규명하는데 있어서 신속하면서, 간단하고 신뢰성있는 방법을 제시하고자 한다. 동적관입시험(DCP)을 사용하여 콘크리트 슬라브하부의 노상토에 대한 강도를 측정하였다. 타격회수에 대한 침하의 양으로 측정되는 동적관입침하율을 비교하여 포장체하부의 연약지반에 대한 위치를 규명하였다. 콘크리트 포장체 하부의 공동(空洞)현상 및 연약화된 노상토에 대한 정보를 얻고자 하는 엔지니어를 위하여 시험방법 및 결과분석 등을 현장시험을 통하여 체계적으로 설명하였다.

  • PDF

Analysis of Correlation among Various Compaction Evaluation Methods for Estimating of the Bearing Capacity on Subgrades (노상토의 지지력 평가를 위한 다짐평가기법의 상관성 분석)

  • Lee, Joonyong;Jeoung, Jae-Hyeung;Choi, Changho;Kim, Jin-Young;Jin, Hyunwoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.45-58
    • /
    • 2015
  • Even though the plate bearing test (PBT) to evaluate the load baring capacity and the field density test to evaluate the relative density are mainly used for quality control of soil compaction in Korea, use of the dynamic cone penetrometer test (DCPT) and the dynamic plate bearing test (DPBT) considering economic feasibility, rapidity, and suitability for field conditions increase to use for quality control of soil compaction. In this study, bearing capacity and relative density of subgrade with thickness of 20 cm, 30 cm, and 40 cm are estimated using PBT, DCPT, DPBT and field density test in three field compaction tests, and the relationship among various compaction evaluation methods is analyzed and discussed.

Applicability of Resistivity/Capacitance Measurement on CPT Module for Investigation of Subsurface Contamination (지반 오염도 조사를 위한 전기비저항/정전용량 측정콘의 적용성 평가)

  • Oh, Myoung-Hak;Kim, Yong-Sung;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.45-54
    • /
    • 2006
  • Resistivity cone penetrometer test (RCPT) can be employed at a relatively low cost for in-situ delineation of subsurface contamination. While the resistivity measurement has a potential to investigate the subsurface contamination, resistivity measurements alone will lead to some degree of ambiguity in the results. In this study, capacitance measurement was incorporated into the RCPT to overcome the ambiguity inherent in electrical resistivity measurements. This study is focused on verifying the applicability of resistivity and capacitance measurements of CPT module to provide information on subsurface contaminated by heavy metal and petroleum hydrocarbon. Laboratory model tests were performed to evaluate the sensitivity of the measured resistivity and relative capacitance on the water content and different types of contaminants. Test results show that simultaneous measurement of electrical resistivity and capacitance can give more reliable information on subsurface contamination. Electrical measurements of the CPT module showed high applicability to be used in detecting saturated soils contaminated by heavy metal and diesel plume floating above the groundwater table.

Characterization of Cone Index and Tillage Draft Data to Define Design Parameters for an On-the-go Soil Strength Profile Sensor

  • Chung S. O.;Sudduth Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 2004
  • Precision agriculture aims to minimize costs and environmental damage caused by agriculture and to maximize crop yield and profitability, based on information collected at within-field locations. In this process, quantification of soil physical properties, including soil strength, would be useful. To quantify and manage variability in soil strength, there is need for a strength sensor that can take measurements continuously while traveling across the field. In this paper, preliminary analyses were conducted using two datasets available with current technology, (1) cone penetrometer readings collected at different compaction levels and for different soil textures and (2) tillage draft (TD) collected from an entire field. The objective was to provide information useful for design of an on-the-go soil strength profile sensor and for interpretation of sensor test results. Analysis of cone index (CI) profiles led to the selection of a 0.5-m design sensing depth, 10-MPa maximum expected soil strength, and 0.1-MPa sensing resolution. Compaction level, depth, texture, and water content of the soil all affected CI. The effects of these interacting factors on data obtained with the soil strength sensor should be investigated through experiments. Spatial analyses of CI and TD indicated that the on-the-go soil strength sensor should acquire high spatial-resolution, high-frequency ($\ge$ 4 Hz) measurements to capture within-field spatial variability.

  • PDF

Development of A System for Decision of Strength Parameters and of Degree of Compaction in Compacted Soil with Cone Penetrometer (콘관입시험기를 이용한 다짐도 측정 및 지반정수 추출법 개발)

  • Lim, YuJin;Lee, HyeonSeung
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • To evaluate the compaction in the domestic construction sites, mainly(PBT) plate bearing test is used. PBT may result in over-estimation in the well-compacted area. Estimation method for the degree of compaction was developed from the penetration index of the surface by cone penetration. The developed system is easily attached to the mobile transportation and directly can acquire the degree of compaction.

  • PDF

In-situ estimation of effective rooting depth for upland crops using hand penetration of cone probe (원추형 탐침봉을 이용한 밭작물 유효근권심 현장 진단)

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.183-189
    • /
    • 2015
  • Plant root penetration through soil profile is restricted by compacted layer such as plow pan under conventional tillage. For detecting the compact layer, we made a graduated T-shape probe and measured compared between the depths with rapid change in feeling hardness of hand penetration using T-shape probe and with a rapid increase of penetrometer cone index. On upland crops, including red pepper, corn, soybean and cucumber, plow pan depth ranged from 10 cm to 25 cm depth. The effective rooting depth (ER) had significant correlation with the plow pan depth (PP) except soils with the shallow ground water and/or poorly drained soil. The regression equation was ER = 0.9*PP ($R^2=0.54^{**}$, N = 14) with the applicative PP range of 10-25 cm.

다목적 콘 관입시험기의 활용

  • Bae, Myeong-Ho;Yoon, Hyung-Koo;Kim, Ju-Han;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.163-170
    • /
    • 2010
  • Today, In-Situ testing for measureing geotechnical characterization are divided by Cone Penetration Test, Standard Penetration Test and Dilatometer Test, and will vary depending on soil conditions have been applied (Korea Geotechnical Engineering, 2006). However, these methods can be applied on sand or soft clay soil. Now, many studies are progressing for evaluating the stiffness characteristic of rocks and IGM. and Nam moon suk(2006) did Texas Cone Penetrometer Test for designing field penetration pile intruded at rocks and IGM. but, reliability of Texas Cone Penetration Test has confidence limits because TCPT is testing in Texas centrally, and energy dose not measure Woojin Lee, etc. (1998) did calculate Standard Penetration Test Hammer's dynamic energy efficiency by using dongjaeha analyzer. this research, we installed strain gage and accelerometer for supply existing equipment, and develop MCP that can use variety soils. this thesis, we measured energy at head and tip of Rod for evaluating energy that transport at free falling. As a result, Energy differences are occurred at head and tip of Rod.

  • PDF

Effect of the Temperature Change on the Cone Tip Resistance (지중의 온도변화가 콘 선단저항력에 미치는 영향)

  • Kim, Rae-Hyun;Lee, Woo-Jin;Yoon, Hyung-Koo;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.361-367
    • /
    • 2009
  • The criteria such as ASTM recommends that the zero reading process of CPT must be performed in the same temperature condition with underground in order to reduce the effect of temperature. However, this method can not consider the change of temperature occurred during penetration. In this study, ultra small size temperature sensor with 0.5mm in diameter is manufactured to estimate and compensate the effect of temperature by using FBG sensor. The continuous temperature changes are monitored during cone penetration by using FBG temperature sensor installed in cone penetrometer. The temperature compensated tip resistances show the uniform and similar distributions with depth in different with originally measured tip resistance in cohesive soil. This study verifies that the tip resistances measured by previous zero reading method are affected by the change of underground temperature, and suggests the new temperature compensation technique using by FBG temperature sensor.

  • PDF