• 제목/요약/키워드: Cone index

검색결과 197건 처리시간 0.022초

정밀 경운을 위한 원추지수 지도 작성 (Mapping of Cone Index for Precision Tillage)

  • 정병학;박영준;박해권;박서범;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제30권2호
    • /
    • pp.127-133
    • /
    • 2005
  • Precision tillage is designed to till lands variably according to their firmness. Therefore, it is necessary to measure soil firmness in fields and present it in a form with which the variable tillage on be performed. Such forms may be classified into two categories: sensor-based and map-based forms. The map-based approach appears to be inevitable until the technology develops high enough to secure the sensor-based approaches. The first step for map-based precision tillage may be to develop a tillage recommendation map. In this study, a tractor-mountable automatic soil firmness measurement system was developed to construct a cone index map. The system is comprised of three ASAE Standard cone penetrometers and a hydraulic unit for controlling operation of the penetrometers. The system is designed to conduct stop-and-go measurements in fields. The measurements from the three penetrometers are transferred to a microcomputer and the average cone index was calculated. This average cone index was taken as soil firmness of the location where the measurement was made. The cone indices thus determined were used to construct a cone index map using the ArcView software. The system also displays the soil penetration resistance, cone index and soil depth as the cone penetrates into the soil. The field performance of the system was evaluated and the cone index maps at different depths were also presented.

원추 지수가 트랙터 작업 부하에 미치는 영향 (Effect of the Cone Index on the Work Load of the Agricultural Tractor)

  • 김완수;김용주;백승민;백승윤;문석표;이남규;김택진;엠디 아부 아윱 시디크;전현호;김연수
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권2호
    • /
    • pp.9-18
    • /
    • 2020
  • The purpose of this study was to analyze the effect of the soil cone index (CI) on the tractor work load. A load measurement system was constructed for measuring the field data. The field sites were divided into grids (3×3 m), and the cone index was measured at the center of each grid. The work load measured through the plow tillage was matched with the soil cone index. The matched data were grouped at 600 kPa intervals based on the cone index. The work load according to the cone index was analyzed for engine, axle, and traction load, respectively. The results showed that when the cone index increased, engine torque decreased by up to 9%, and the engine rotational speed and brake-specific fuel consumption increased by up to 5% and 3%, respectively. As the cone index increased, the traction and tillage depth were inversely proportional to the cone index, decreasing 7% and 18%, respectively and the traction and tillage depth were directly proportional to the cone index, increasing 13% and 12%, respectively. Thus, it was found that the cone index had a major influence on the engine, axle, and traction loads of the tractor.

차륜 슬립과 침하를 이용한 실시간 정격 원추 지수 예측 (Real Time Prediction of Rating Cone Index using Measured Wheel Sinkage and Slip)

  • 남주석;김대철;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제34권4호
    • /
    • pp.205-210
    • /
    • 2009
  • It has been known from Willoughby's empirical equation that rating cone index can be determined if wheel sinkage and slip of a vehicle can be measured on soil surface. A field data of wheel sinkage and slip was collected from two tractors of different sizes on gravelly sand and gravelly loamy sand. Using the data, rating cone index of the soil was estimated. The estimated rating cone index demonstrated that it could be determined in real time by measuring wheel sinkage and slip. It was also demonstrated statistically that the same soil strength could be obtained under the same soil conditions regardless of the vehicle platforms used for the wheel sinkage and slip measurements.

원추지수를 이용한 경운 정지 작업의 작업성 예측 (Prediction of tillage Workability by Cone Index)

  • 최석원;오영근;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.195-202
    • /
    • 2000
  • This study was conducted to recognize a possibility that cone index can be used as a means of evaluating the tillage workability. Cone indexes were measured every 24 hours after rainfall at the experimental plots, and the rotary and plowing operations were conducted at the same time. The workability was evaluated on a basis of three categories of good, fair and poor depending on the quality of the performed works. Although the workability was affected by many factors such as soil type, moisture content ground slope and weather condition, the duration and amount of rainfall were of most influence. Results of the study showed that a good workability was resulted from the cone indexes greater than an average of 552 kPa for rotary operations and 671 kPa for plowing operations. Fair work was obtained with cone indexes greater than an average of 331 kPa for rotary operations and 459 kPa for plowing operations. The cone indexes less than an average of 171 kPa and 149 kPa resulted in poor workabilities for rotary and plowing operations, respectively. The experimental results may provide a general guideline for evaluating the tillage workability by cone index.

  • PDF

주행형(走行型) Cone-Penetrometer 개발(開發)에 관(關)한 연구(硏究) (Development of Travelling Cone-Penetrometer)

  • 이기명;송재관;장대철;정성원
    • Journal of Biosystems Engineering
    • /
    • 제12권3호
    • /
    • pp.1-6
    • /
    • 1987
  • The objective of this study is to develop a soil hardness tester which can estimate tillage resistance with tae travelling cone-penetrometer. For the study, a series of tests was performed using the cone penetrating in the horizontal direction. Based on the tests above, soil hardness was represented by travelling cone-index vs depth of cone penetration, travelling speed and moisture contents of the soil Resistance characteristics obtained from the experiments were compared with those by a vertical cone-penetrometer and the Yamanaka's soil hardness tester. Following conclusions were made from the study. 1. 8 to 9 peaks per one meter were detected in the resistance curve of cone penetration regardless of the travelling speed of cone-penetrometer when it penetrated the soil in the horizontal direction. This phenomenon seemed to be a similar one noticed in shearing pitch of plowing. 2. Cone index increased as travelling speed increased from 0.08m/sec to 0.5m/sec. 3. Linear relationship was found between the cone indices measured by the travelling coe-penetrometer and Yamanaka's hardness tester. 4. Increasing rate of the cone indices measured by vertical cone-penetrometer decreased as the depth of soil increased while the cone indices by the travelling cone-pentrometer increased linearly.

  • PDF

토양 경도 측정방법간 비교연구 (A Study of Relation Between Yamanaka Hardness and Penetrometer Cone Index)

  • 한경화;조희래;전상호;장용선
    • 한국토양비료학회지
    • /
    • 제44권3호
    • /
    • pp.344-346
    • /
    • 2011
  • 산중식 경도 (YA, MPa)와 관입식 경도 Cone index (PE, MPa) 의 측정치를 토양특성이 다른 16개 지점에서 비교해 본 결과, 다음과 같은 회귀식을 구할 수 있었다. $$PE=YA^*1.80+0.16(R^2=0.91^{***},N=16)$$ 이 회귀식의 적용범위는 산중식경도 0.1 MPa 이상 1.3 MPa 이하, mm 단위로 8.0 mm 이상 24.5 mm 이하였다.

인공신경망을 적용한 지반 전단강도정수와 콘지수 사이의 상관관계 분석 1 (Correlation Analysis between Soil Shear Strength Parameters and Cone Index Using Artificial Neural Networks - 1)

  • 문인종;김영욱
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.2234-2241
    • /
    • 2015
  • 본 연구에서는 국내 지반의 전단강도정수와 콘지수 사이의 상관관계를 확립하기 위하여 먼저 콘관입 모델을 통한 이론적 상관관계를 정리하고 이의 신뢰도를 높이기 위하여 인공신경망 기법을 적용하였다. 이론적 상관관계는 이론식을 유도하면서 적용한 가정들로 인하여 신뢰성 있는 지반의 거동을 예측하기 어려운 측면이 있다. 따라서 인공신경망 기법을 적용하여 이론적, 경험적 방법과 같은 기존의 방법과는 다른 새로운 측면에서 지반의 거동 특성을 파악할 필요성이 있다. 인경신경망 모델은 국내의 다양한 건설현장에서 수행한 지반조사 보고서를 통해서 입력자료를 확보한 뒤에 모델학습을 수행하였다. 연구결과 측정값과 예측값의 오차가 크지 않았고, 비교적 고르게 분포함을 알 수 있었다. 추후 보강된 인공신경망 모델을 구축하면 국내 특정 지역뿐만 아니라 일반화된 지역에 보편적으로 적용할 수 있을 것으로 기대된다.

디지털 원추관입기 개발 (Development of a Digital Cone Index Measuring Device)

  • 이규승;이동훈;조용진;정선옥;박원엽;노광모;장영창
    • Journal of Biosystems Engineering
    • /
    • 제35권6호
    • /
    • pp.387-392
    • /
    • 2010
  • This study was performed to design and to construct a digital soil cone index(CI) measuring device replacing conventional analog type devices. The device developed in the study consisted of a load cell, a rotary encoder and a motor with a decelerator as its main parts. The cone speed was controlled lower than 3.0 m/s which keeps the standard suggested by the ASABE S313.3 specification. The experiment was conducted in a soil bin system as well as in various fields. The CI data measured by the developed device were compared with those by an existing measurement device(SC900, Spectrum, USA). Based on the experiments at various field conditions, the CI measuring characteristic of the device was quite similar to that of the conventional device within a acceptable $R^2$ range of more than 0.5(mean=0.76). It was concluded that the digital cone index measuring device was an effective and comprehensive sensor for measuring soil strength.

Characterization of railway substructure using a hybrid cone penetrometer

  • Byun, Yong-Hoon;Hong, Won-Taek;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1085-1101
    • /
    • 2015
  • Changes in substructure conditions, such as ballast fouling and subgrade settlement may cause the railway quality deterioration, including the differential geometry of the rails. The objective of this study is to develop and apply a hybrid cone penetrometer (HCP) to characterize the railway substructure. The HCP consists of an outer rod and an inner mini cone, which can dynamically and statically penetrate the ballast and the subgrade, respectively. An accelerometer and four strain gauges are installed at the head of the outer rod and four strain gauges are attached at the tip of the inner mini cone. In the ballast, the outer rod provides a dynamic cone penetration index (DCPI) and the corrected DCPI (CDCPI) with the energy transferred into the rod head. Then, the inner mini cone is pushed to estimate the strength of the subgrade from the cone tip resistance. Laboratory application tests are performed on the specimen, which is prepared with gravel and sandy soil. In addition, the HCP is applied in the field and compared with the standard dynamic cone penetration test. The results from the laboratory and the field tests show that the cone tip resistance is inversely proportional to the CDCPI. Furthermore, in the subgrade, the HCP produces a high-resolution profile of the cone tip resistance and a profile of the CDCPI in the ballast. This study suggests that the dynamic and static penetration tests using the HCP may be useful for characterizing the railway substructure.

논토양 경반의 물리적 특성 (Physical Properties of Hardpan in Paddy Fields)

  • 이규승;박준걸;조성찬;노광모;장영창
    • Journal of Biosystems Engineering
    • /
    • 제32권4호
    • /
    • pp.207-214
    • /
    • 2007
  • Based on the profiles of cone index with depth, physical properties of hardpan in selected rice fields were measured and analyzed in the study. An error correction algorithm removing a random measurement error from raw CI profile data was introduced in the study. The properties of hardpan included the shape, the thickness and the rice root growing layer. The analysis of physical properties of hardpan in the rice fields showed that the type of hardpan could be classified into 6 categories. The thickness of hardpan ranged from 6 cm up to 41 cm and the average hardness of hardpan was analyzed to be from 1.1 MPa through 3.2 MPa in Cone index.