• Title/Summary/Keyword: Conductor model

Search Result 221, Processing Time 0.023 seconds

Optimization of wire construction from several 2G HTS tapes

  • Kumarov, D.R.;Sotnikov, D.;Scherbakov, V.I.;Mankevich, A.;Molodyk, A.;Sim, Kideok;Hwang, Soon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.24-28
    • /
    • 2019
  • Despite the second generation HTS tapes (2G HTS tape) have limits in critical current value, scientific and electric devices require more current density day after day. These requirements are realized by using different superconducting wires that consist of 2G HTS tapes designed in various combinations. Authors of this paper have developed the numerical model for estimation of total critical current in the superconducting wire and critical current in each 2G HTS tape placed in this superconducting wire. The current drop in six 2G HTS tapes having different constructions was analyzed. The result of this research is the decrease of critical current up to 25 % for the stack of tapes and up to 5 % for the parallel tapes in the same plane. In addition, what was also made is the estimation of the current distribution by length for six 25 m 2G HTS tapes in different constructions and determination of current deviation by length of the wire.

Methodology for Optimizing Permittivity Distribution of 145 kV Miniaturized Functional Graded Spacer Using Non-Dominated Sorting Genetic Algorithm-II (비지배 정렬 유전 알고리즘-II를 이용한 145 kV급 축소형 경사기능성 적용 스페이서의 유전율 분포 최적화 방법론)

  • Noh, Yo-Han;Kim, Seung-Hyun;Cheong, Jong-Hun;Cho, Han-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.225-230
    • /
    • 2020
  • Recently, with the miniaturization of GIS, there is a need for the miniaturization of spacers as accessories. Miniaturized spacers make it difficult to secure adequate insulation distances, resulting in a more concentrated electric field at the triple junction of high-voltage (HV) conductor-insulator (spacer)-insulation gas (SF6), which is a weakness in GIS. Therefore, by introducing a new concept design technology, functionally graded material (FGM), which is recently applied to various materials and parts industries, three-dimensional control of the dielectric constant distribution in a spacer can be expected to alleviate triple-junction electric field occupancy and improve insulation performance. In this study, we propose an optimized model using NSGA-II to optimize the permittivity distribution of FGM applied spacer.

Superconductivity for HTS GdBCO CC with heat treatment

  • You, Jong Su;Yang, Jeong Hun;Song, Kyu Jeong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.1
    • /
    • pp.12-16
    • /
    • 2021
  • The magnetic properties of heat treated O-series high temperature superconducting (HTS) GdBCO coated conductor (CC) tapes which were formed of Ag/GdBCO/Buffer-layers/Stainless Steel (SS), were investigated by employing a Quantum Design PPMS-14. Using a modified Bean model, the critical current density Jc values have been estimated from the 𝚫mirr(H) data, which are obtained by measuring the magnetic moment m(H) loops. For a range of intermediate fields, which are interacting or collective flux pinning area, the magnetic flux behaviors were investigated from the relationship Jc ∝ H. In addition, the changes of irreversibility magnetic field Hirr line of heat-treated O-series HTS GdBCO CC tapes were analyzed, according as the annealing temperature under oxygen flowing increases. Both weak and strong break-downs were found by examining the changes of irreversibility magnetic field Hirr lines.

Uncertainty Analysis of Dynamic Thermal Rating of Overhead Transmission Line

  • Zhou, Xing;Wang, Yanling;Zhou, Xiaofeng;Tao, Weihua;Niu, Zhiqiang;Qu, Ailing
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.331-343
    • /
    • 2019
  • Dynamic thermal rating of the overhead transmission lines is affected by many uncertain factors. The ambient temperature, wind speed and wind direction are the main sources of uncertainty. Measurement uncertainty is an important parameter to evaluate the reliability of measurement results. This paper presents the uncertainty analysis based on Monte Carlo. On the basis of establishing the mathematical model and setting the probability density function of the input parameter value, the probability density function of the output value is determined by probability distribution random sampling. Through the calculation and analysis of the transient thermal balance equation and the steady- state thermal balance equation, the steady-state current carrying capacity, the transient current carrying capacity, the standard uncertainty and the probability distribution of the minimum and maximum values of the conductor under 95% confidence interval are obtained. The simulation results indicate that Monte Carlo method can decrease the computational complexity, speed up the calculation, and increase the validity and reliability of the uncertainty evaluation.

Conceptual design of 240 mm 3 T no-insulation multi-width REBCO magnet

  • Choi, Kibum;Lee, Jung Tae;Bang, Jeseok;Bong, Uijong;Park, Jeonghwan;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.43-46
    • /
    • 2019
  • A rare-earth barium copper oxide (REBCO) superconducting magnet was designed using no-insulation (NI) and multi-width (MW) winding techniques. The proposed magnet is comprised of 58 REBCO-wound single pancake coils with a bore size of 240 mm. When the magnet is operated at 20 K, the center magnetic flux density is designed to reach 3 T with an operational current of 169.55 A, 70 % of its critical current. The critical current was evaluated using experimental data of a short REBCO conductor sample. The designed magnet was then simulated using FEM software with uniform current density model. Magnetic field and mechanical properties of the magnet are evaluated using the simulated data. This magnet was designed as one of the base designs for the project "Tesla-Level Magnets with Large Bore Sizes for Industrial Applications" which was initiated in 2019, and will be wound using REBCO wires with the defect-irrelevant-winding (DIW) technique incorporated to reduce the overall manufacturing cost.

The study of the relationship of the defense industry-specific factors effect the innovation of manufacturing technology and the market share. (방위산업의 시장구조 결정요인이 기술혁신과 시장지배에 미치는 영향)

  • Chung, Young-Hyun
    • Journal of National Security and Military Science
    • /
    • s.5
    • /
    • pp.241-280
    • /
    • 2007
  • This study examines the relationship of the industry-specific factors that effect innovation of manufacturing technology and the market share within the defense industry. Since the establishment of the basic defense industry framework in 1973, there were numerous interactions of the industry-specific factors of the defense industry structure with the technological innovation and market organization of the defense industry. During last three decades, the domestic defense industry has achieved the considerable level but the framework of the basic system has not developed much in areas of the military science and the defense manufacturing technology. Industry-specific factors were formed in the process and appeared in a variety of behavioral characteristics as subsystems. Currently, there IS a growing trend where the management of defense industry is gradually deteriorating due to limitation of the domestic industry-specific factor (e.g. defense technologies, amount of demand, etc.). If there is a prominent imbalance of the industry-specific factors. it can trigger the potential problem of conflict, lack of cooperation and control, slowing the growth of the manufacturing technology thereby diminishing the market and deteriorating the defense supply/demand relationship. In a research conducted by Joe S. Bain, Bain analyzed the relationship of the traditional industrial organization where industry-specific factor(S) not only impacts the conductor(C). And, conductor(C) influences the shaping of the performance(P) of relationship of the traditional industrial organization. Consequently, the researcher has identified the demand monopoly, barriers to entry, and market competition with comparison of defense industry issues. These defense issues were three industry-specific factors identified, which are 1) The demand monopoly and The entry barriers to new market competition, 2) the industrial technical factor to a production technical competitiveness and a market sharing competitiveness, 3) the probability factor to revolution for military affairs(RMA) and a R&D production. According to baseline with these factors, the following research model is established from the special companies group(Group A), the systematization companies group(Group B), and the general companies group(Group 0. The hypothesis is that if there are more industry-specific factors, then there will be more relationships of defense industry relation statutes. This research is an empirical study on the relationship that the industry specific factors effects the innovation of manufacturing technology and the shaping of the market in the defense industry. Moreover, the existing models to evaluate the industry specific factors of the defense industry IS much to be desired with the controlled statistical analysis of the result. It is vital to study on current situation with suggesting alternative strategy to the efficient strategy. The descriptive analysis approach analysis is conducted with SPSSWIN to conduct reliability test, factor analysis, correlation analysis, cross-tabulation analysis, one-way ANOVA, and multiple regression analysis. However, there were some limitations of the survey such as the rigidity of concept about the technical factors and various market management factors. The wishes is that the decision-maker could be utilized these defence industrial factors to formulate efficient defence policy and strategy in the future.

  • PDF

Development of Buried Type TDR Module for Leak Detection from Buried Pipe (매설관 주변부 누수 탐지를 위한 매설형 TDR 모듈 개발)

  • Hong, Wontaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2021
  • To prevent accidents due to the cavities and loosened layers formed due to water leakage from the deteriorated buried pipes, evaluation of the changes in water contents around the buried pipes is required. As a method to evaluate the water contents of the soils, time domain reflectometry (TDR) system can be adopted. However, slender electrodes used in standard TDR probe may be damaged when buried in the ground. Thus, in this study, buried type TDR module was developed for the evaluation of the water contents with maintaining required shape of the electrodes in the ground. The TDR module is composed of three electrodes connected to the core conductor and outer conductor and a casing to prevent deformation and maintain alignment of the electrodes in the ground. For the verification of TDR waveforms measured using the TDR module, comparative analysis was conducted with the TDR waveforms measured using the standard TDR probe, and the relationship between the volumetric water content of the soils and the travel time of the guided electromagnetic wave was constructed. In addition, a model test was conducted to test the applicability of the buried type TDR module, and the experimental result shows that the TDR module clearly evaluates the changes in volumetric water contents due to the leakage from the modeled buried pipe. Therefore, the buried type TDR module may be effectively used for the health monitoring of the buried pipe and the evaluation of the water contents around the pipes buried in the urban pavements.

A methodology for Identification of an Air Cavity Underground Using its Natural Poles (물체의 고유 Pole을 이용한 지하 속의 빈 공간 식별 방안)

  • Lee, Woojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.566-572
    • /
    • 2021
  • A methodology for the identification and coordinates estimation of air cavities under urban ground or sandy soil using its natural poles and natural resonant frequencies is presented. The potential of this methodology was analyzed. Simulation models of PEC (Perfect Electric Conductor)s with various shapes and dimensions were developed using an EM (Electromagnetic) simulator. The Cauchy method was applied to the obtained EM scattering response of various objects from EM simulation models. The natural poles of objects corresponding to its instinct characterization were then extracted. Thus, a library of poles can be generated using their natural poles. The generated library of poles provided the possibility of identifying a target by comparing them with the computed natural poles from a target. The simulation models were made assuming that there is an air cavity under urban ground or sandy soil. The response of the desired target was extracted from the electromagnetic wave scattering data from its simulation model. The coordinates of the target were estimated using the time delay of the impulse response (peak of the impulse response) in the time domain. The MP (Matrix Pencil) method was applied to extract the natural poles of a target. Finally, a 0.2-m-diameter spherical air cavity underground could be estimated by comparing both the pole library of the objects and the calculated natural poles and the natural resonant frequency of the target. The computed location (depth) of a target showed an accuracy of approximately 84 to 93%.

Modal Analysis of Loop Coupling Structure in End Launcher Rectangular Waveguide Adapter (엔드론치형 구형도파관 어댑터 내부의 루프결합구조에 대한 모드 해석)

  • Kim, Dong-Hyun;Jwa, Jeong-Woo;Yang, Doo-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.119-126
    • /
    • 2008
  • In this paper, the loop coupling model for the analysis of end launcher rectangular waveguide adapter are proposed. The formula of input impedance from this model are presented. The influence of propagation mode and higher modes in rectangular waveguide are analyzed and design parameters of the end launcher adapter are investigated. The computational results between the proposed theoretical analysis and the previous papers are compared and are verified by HFSS. The end launcher rectangular waveguide adapter consists of the coupling geometry which is connected the inner conductor of $50{\Omega}$ coaxial line through into the 17.6mm feeding loop in a WR90 commercial waveguide, and the VSWR is maximum 2.0 over operating frequency from 7.5GHz to 10.6GHz.

Use of Adaptive Meshes in Simulation of Combustion Phenomena

  • Yi, Sang-Chul;Koo, Sang-Man
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.285-309
    • /
    • 1996
  • Non oxide ceramics such as nitrides of transition metals have shown significant potential for future economic impact, in diverse applications in ceramic, aerospace and electronic industries, as refractory products, abrasives and cutting tools, aircraft components, and semi-conductor substrates amid others. Combustion synthesis has become an attractive alternative to the conventional furnace technology to produce these materials cheaply, faster and at a higher level of purity. However he process os highly exothermic and manifests complex dynamics due to its strongly non-linear nature. In order to develop an understanding of this process and to study the effect of operational parameters on the final outcome, numerical modeling is necessary, which would generated essential knowledge to help scale-up the process. the model is based on a system of parabolic-hyperbolic partial differential equations representing the heat, mass and momentum conservation relations. The model also takes into account structural change due to sintering and volumetric expansion, and their effect on the transport properties of the system. The solutions of these equations exhibit steep moving spatial gradients in the form of reaction fronts, propagating in space with variable velocity, which gives rise to varying time scales. To cope with the possibility of extremely abrupt changes in the values of the solution over very short distances, adaptive mesh techniques can be applied to resolve the high activity regions by ordering grid points in appropriate places. To avoid a control volume formulation of the solution of partial differential equations, a simple orthogonal, adaptive-mesh technique is employed. This involves separate adaptation in the x and y directions. Through simple analysis and numerical examples, the adaptive mesh is shown to give significant increase in accuracy in the computations.

  • PDF