• Title/Summary/Keyword: Conductive structure

Search Result 403, Processing Time 0.029 seconds

Dielectric Breakdown Analysis of Bone-Like Materials with Conductive Channels (전도채널을 갖는 뼈와 유사한 재료의 절연파괴 해석)

  • Lee, Bo-Hyun;Lin, Song;Beom, Hyeon-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.583-589
    • /
    • 2011
  • The dielectric breakdown of bone-like materials subject to purely electric fields is investigated. In general, these materials consist of some layers with stronger dielectric strength and others with weaker dielectric strength in a parallel staggered pattern. The growth of the conductive channel is impeded during penetration of the weaker layer in the bone-like material because the electric-field concentration is relieved. The electric-field distribution around the head of the tubular channel is obtained from finite element analysis. The dielectric strength of the bone-like material is evaluated using the J integral, and some parameters affecting the dielectric strength are determined. It is shown that the J-integral values are reduced with an increase in the breakdown area in the weaker layer. It is also found that the ratio of the permittivity of the weaker layer to that of the stronger layer can strongly affect the dielectric breakdown.

Electrical Properties of TiN/TiO2/FTO Resistive Random-Access Memory Based on Peroxo Titanium Complex Sol Solution by Heat Treatment (열처리에 따른 Peroxo Titanium Complex 졸 용액 기반 TiN/TiO2/FTO Resistive Random-Access Memory의 전기적 특성)

  • Yim, Hyeonmin;Lee, Jinho;Kim, Won Jin;Oh, Seung-Hwan;Seo, Dong Hyeok;Lee, Donghee;Kim, Ryun Na;Kim, Woo-Byoung
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.384-390
    • /
    • 2022
  • A spin coating process for RRAM, which is a TiN/TiO2/FTO structure based on a PTC sol solution, was developed in this laboratory, a method which enables low-temperature and eco-friendly manufacturing. The RRAM corresponds to an OxRAM that operates through the formation and extinction of conductive filaments. Heat treatment was selected as a method of controlling oxygen vacancy (VO), a major factor of the conductive filament. It was carried out at 100 ℃ under moisture removal conditions and at 300 ℃ and 500 ℃ for excellent phase stability. XRD analysis confirmed the anatase phase in the thin film increased as the heat treatment increased, and the Ti3+ and OH- groups were observed to decrease in the XPS analysis. In the I-V analysis, the device at 100 ℃ showed a low primary SET voltage of 5.1 V and a high ON/OFF ratio of 104. The double-logarithmic plot of the I-V curve confirmed the device at 100 ℃ required a low operating voltage. As a result, the 100 ℃ heat treatment conditions were suitable for the low voltage driving and high ON/OFF ratio of TiN/TiO2/FTO RRAM devices and these results suggest that the operating voltage and ON/OFF ratio required for OxRAM devices used in various fields under specific heat treatment conditions can be compromised.

PCB Ground Structure Improvement for Radiation Noise Reduction (방사 잡음 감소를 위한 인쇄회로기판의 접지 구조 개선)

  • 송상화;권덕규;이해영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.233-238
    • /
    • 2003
  • With the growth of high speed circuit, unwanted system noise is increased and multipoint ground is used to reduce this noise. PCB screw ground structure has radiation noise by ground loop between screws. In order to solve this problem, in this paper, we proposed improved PCB ground structure. Proposed structure improves noise absorption by using microwave absorber and conductive copper tape. We measured radiation PCB noise in the range of 1 ㎓ to 3 ㎓ to investigate proposed structure usefulness. From these results, under 2 ㎓ range proposed structure has noise reduction by 2.62 dBuV/m, which compared with screw ground.

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

Anatomy of a flare-producing current layer dynamically formed in a coronal magnetic structure

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.41.3-42
    • /
    • 2016
  • No matter how intense magnetic flux it contains, a coronal magnetic structure has little free magnetic energy when a composing magnetic field is close to a potential field, or current-free field where no volume electric current flows. What kind of electric current system is developed is therefore a key to evaluating the activity of a coronal magnetic structure. Since the corona is a highly conductive medium, a coronal electric current tends to survive without being dissipated, so the free magnetic energy provided by a coronal electric current is normally hard to release in the corona. This work aims at clarifying how a coronal electric current system is structurally developed into a system responsible for producing a flare. Toward this end, we perform diffusive MHD simulations for the emergence of a magnetic flux tube with different twist applied to it, and go through the process of structuring a coronal electric current in a twisted flux tube emerging to form a coronal magnetic structure. Interestingly, when a strongly twisted flux tube emerges, there spontaneously forms a structure inside the flux tube, where a coronal electric current changes flow pattern from field-aligned dominant to cross-field dominant. We demonstrate that this structure plays a key role in releasing free magnetic energy via rapid dissipation of a coronal electric current, thereby producing a flare.

  • PDF

Improvement of Interfacial Performances on Insulating and Semi-conducting Silicone Polymer Joint by Plasma-treatment

  • Lee, Ki-Taek;Huh, Chang-Su
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2006
  • In this paper, we investigated the effects of short-term oxygen plasma treatment of semiconducting silicone layer to improve interfacial performances in joints prepared with a insulating silicone materials. Surface characterizations were assessed using contact angle measurement and x-ray photoelectron spectroscopy (XPS), and then adhesion level and electrical performance were evaluated through T-peel tests and electrical breakdown voltage tests of treated semi-conductive and insulating joints. Plasma exposure mainly increased the polar component of surface energy from $0.21\;dyne/cm^2$ to $47\;dyne/cm^2$ with increasing plasma treatment time and then leveled off. Based on XPS analysis, the surface modification can be mainly ascribed to the creation of chemically active functional groups such as C-O, C=O and COH on semi-conductive silicone surface. This oxidized rubber layer is inorganic silica-like structure of Si bound with three to four oxygen atoms ($SiO_x,\;x=3{\sim}4$). The oxygen plasma treatment produces an increase in joint strength that is maximum for 10 min treatment. However, due to brittle property of this oxidized layer, the highly oxidized layer from too much extended treatment could be act as a weak point, decreasing the adhesion strength. In addition, electrical breakdown level of joints with adequate plasma treatment was increased by about $10\;\%$ with model samples of joints prepared with a semi-conducting/ insulating silicone polymer after applied to interface.

Preparation and characterization of nanoflake composite multi core-shell SrFe12O19/Fe3O4/PEG/PPy

  • Hosseini, Seyed Hossein;Majidpour diz, Mohammad
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.161-168
    • /
    • 2012
  • Nanoflake composite multi core-shell $SrFe_{12}O_{19}/Fe_3O_4$/PEG/Polypyrrole was synthesized by in situ polymerization method. In this paper, the fabrication of $SrFe_{12}O_{19}$ nanoflake is as first core by solgel method. Then fabricated a shell layer from magnetic nanoparticles of $Fe_3O_4$, which synthesized by coprecipitation technique, onto the $SrFe_{12}O_{19}$ nanoflake. Polyethylene glycol (PEG) as a polymer layer and as second shell was coated onto the before core-shell. Than core-shell $SrFe_{12}O_{19}/Fe_3O_4$/PEG was used as template for the preparation of $SrFe_{12}O_{19}/Fe_3O_4$/PEG/Polypyrrole composite. Final composite has a conductive property among $4.23{\times}10^{-2}Scm^{-1}$ and magnetic property about $M_s$=2.99 emu/g. Also final composite in soluble at organic solvent such as DMF and DMSO and has a flake structure. Conductivity and magnetic property respectively determine by four-probe instrument and vibrant sample magnetometer (VSM), morphology and article size determined by FE-SEM, TEM and XRD.

Properties of IZTO Thin Films Deposited on PET Substrates with The SiO2 Buffer Layer

  • Park, Jong-Chan;Kang, Seong-Jun;Chang, Dong-Hoon;Yoon, Yung-Sup
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.72-76
    • /
    • 2015
  • 150-nm-thick In-Zn-Tin-Oxide (IZTO) films were deposited by RF magnetron sputtering after a 10 to 50-nm-thick $SiO_2$ buffer layer was deposited by plasma enhanced chemical vapor deposition (PECVD) on polyethylene terephthalate (PET) substrates. The electrical, structural, and optical properties of the IZTO/$SiO_2$/PET films were analyzed with respect to the thickness of the $SiO_2$ buffer layer. The mechanical properties were outstanding at a $SiO_2$ thickness of 50 nm, with a resistivity of $1.45{\times}10^{-3}{\Omega}-cm$, carrier concentration of $8.84{\times}10^{20}/cm^3$, hall mobility of $4.88cm^2/Vs$, and average IZTO surface roughness of 12.64 nm. Also, the transmittances were higher than 80%, and the structure of the IZTO films were amorphous, regardless of the $SiO_2$ thickness. These results indicate that these films are suitable for use as a transparent conductive oxide for transparency display devices.

Bar-Code Shape UHF RFID Tag Antenna (바코드 모양의 UHF RFID 태그 안테나 설계)

  • Jeon, Byung-Don;Chung, You-Chung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.131-134
    • /
    • 2012
  • A bar-code shape UHF RFID tag antenna is designed and fabricated with silver conductive ink. It can be recognize by both bar-code scanner and RFID reader. The bar-code shape is taken from a general box of a product, and the product code of the bar-code is used for the antenna design. The tag antenna is fabricated with silver conductive ink using a T-matching structure. The designed tag antenna is satisfied with bar-code system and RFID system simultaneously. The input reflection coefficient characteristics and the reading range pattern are measured. The peak reading range is about 111 cm, which is long enough.

Work Function Modification of Indium Tin Oxide Thin Films Sputtered on Silicon Substrate

  • Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.351.2-351.2
    • /
    • 2014
  • Indium tin oxide (ITO) has a lot of variations of its properties because it is basically in an amorphous state. Therefore, the differences in composition ratio of ITO can result in alteration of electrical properties. Normally, ITO is considered as transparent conductive oxide (TCO), possessing excellent properties for the optical and electrical devices. Quantitatively, TCO has transparency over 80 percent within the range of 380nm to 780nm, which is visible light although its specific resistance is less than $10-3{\Omega}/cm$. Thus, the solar cell is the best example for which ITO has perfectly matching profile. In addition, when ITO is used as transparent conductive electrode, this material essentially has to have a proper work function with contact materials. For instance, heterojunction with intrinsic thin layer (HIT) solar cell could have both front ITO and backside ITO. Because each side of ITO films has different type of contact materials, p-type amorphous silicon and n-type amorphous silicon, work function of ITO has to be modified to transport carrier with low built-in potential and Schottky barrier, and approximately requires variation from 3 eV to 5 eV. In this study, we examine the change of work function for different sputtering conditions using ultraviolet photoelectron spectroscopy (UPS). Structure of ITO films was investigated by spectroscopic ellipsometry (SE) and scanning electron microscopy (SEM). Optical transmittance of the films was evaluated by using an ultraviolet-visible (UV-Vis) spectrophotometer

  • PDF