• Title/Summary/Keyword: Conductive polymer

Search Result 398, Processing Time 0.034 seconds

Fabrication of enzymatic biosensor based on the poly(3-thiophenecarboxylic acid-co-thiophene) polymer as electron-transfer materials

  • Kim, Soo-Yeoun;Jo, Hyeon-Jin;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.269-278
    • /
    • 2019
  • We fabricated glucose oxidase (GOx)-modified biosensor for detection of glucose by physical immobilization of GOx after electrochemical polymerization of the conductive mixture monomers of the 3-thiophenecarboxylic acid (TCA) and thiophene (Th) onto ITO electrode in this study. We confirmed the successfully fabrication of GOx-modified biosensor via FT-IR spectroscopy, SEM, contact angle, and cyclic voltammetry. The fabricated biosensor has the detection limit of $0.1{\mu}M$, the linearity of 0.001-27 mM, and sensitivity of $38.75mAM^{-1}cm^{-2}$, respectively. The fabricated biosensor exhibits high interference effects to dopamine, ascorbic acid, and L-cysteine, respectively. From these results, the fabricated GOx-modified biosensor with long linearity and high sensitivity could be used as glucose sensor in human blood sample.

Moire Interferometry Measurement and Numerical Analysis for Hygroscopic Swelling of Al-Polymer Joint (Al-Polymer 접합체의 흡습팽창에 대한 모아레 간섭 측정 및 수치해석)

  • Kim, Kibum;Kim, Yong-Yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3442-3447
    • /
    • 2014
  • A simple method to evaluate the hygroscopic characteristics of polymer of microelectronic plastic package is suggested. To evaluate the characteristics, specimens were prepared, and the internally absorbed moisture masses were measured as a function of the absorbing time and calculated numerically. The hygroscopic pressure ratio was calculated by heat transfer analysis supported by commercial FEM code because the hygroscopic diffusion equation has the same form as the heat transfer equation. The moisture masses were then summed by the self developed code. The nonconductive polymers had quite different characteristics for the different lots, even though they were the same products. The absorbed moisture mass variations were calculated for several different characteristics, and the optimal curve of the mass variation close to experimental data was selected, whose solubility and diffusivity were affected by the hygroscopic characteristics of the material. The method can be useful in the industrial fields to quickly characterize the polymer material of the semiconductor package because the fast correspondence is normally required in industry. The weight changes in the aluminum-nonconductive-polymer joint due to moisture absorption were measured. The deformed system was also measured using the Moire Interferometry system and compared with the results of finite element analysis.

Effect of Wrapping Treatment on the Dispersion of MWNT in CNT/ABS/SAN Composites (CNT/ABS/SAN계의 분산성에 미치는 MWNT Wrapping 전처리 효과)

  • Kim, Sung Tae;Park, Hae Youn;No, Tae Kyeong;Kang, Dong Gug;Jeon, Il Ryeon;Seo, Kwan Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.372-376
    • /
    • 2012
  • Carbon nanotubes (CNT) are considered as one of ideal nano-fillers in the field of composites with their excellent electrical, mechanical, and thermal properties. Therefore CNT composites are increasingly used in fabricating conductive materials, structural materials with high strength and low weight, and multifunctional materials. The main problem of the CNT composites is difficulty in the dispersion of CNT in the polymer matrix. In this study multi-walled carbon nanotubes (MWNT) were pretreated by the physical process utilizing a wrapping method. After the pretreatment polymer/MWNT nanocomposites were prepared by melt processing. The effect of functionalization MWNT by wrapping with styrene acrylonitrile (SAN) on the mechanical and electrical properties of acrylonitrile butadiene styrene resin (ABS)/MWNT composites was studied by comparing the properties of ABS mixed with the neat MWNT. Electrical and mechanical properties of ABS/MWNT nanocomposites were studied as a function of the functionalization and content of MWNT. The tensile strength of the ABS/MWNT nanocomposites increased, but the impact strength decreased. The polymer wrapping in ABS system has little effect on the improvement of electrical properties.

The Classification and Investigation of Smart Textile Sensors for Wearable Vital Signs Monitoring (웨어러블 생체신호 모니터링을 위한 스마트텍스타일센서의 분류 및 고찰)

  • Jang, Eunji;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.21 no.6
    • /
    • pp.697-707
    • /
    • 2019
  • This review paper deals with materials, classification, and a current article investigation on smart textile sensors for wearable vital signs monitoring (WVSM). Smart textile sensors can lose electrical conductivity during vital signs monitoring when applying them to clothing. Because they should have to endure severe conditions (bending, folding, and distortion) when wearing. Imparting electrical conductivity for application is a critical consideration when manufacturing smart textile sensors. Smart textile sensors fabricate by utilizing electro-conductive materials such as metals, allotrope of carbon, and intrinsically conductive polymers (ICPs). It classifies as performance level, fabric structure, intrinsic/extrinsic modification, and sensing mechanism. The classification of smart textile sensors by sensing mechanism includes pressure/force sensors, strain sensors, electrodes, optical sensors, biosensors, and temperature/humidity sensors. In the previous study, pressure/force sensors perform well despite the small capacitance changes of 1-2 pF. Strain sensors work reliably at 1 ㏀/cm or lower. Electrodes require an electrical resistance of less than 10 Ω/cm. Optical sensors using plastic optical fibers (POF) coupled with light sources need light in-coupling efficiency values that are over 40%. Biosensors can quantify by wicking rate and/or colorimetry as the reactivity between the bioreceptor and transducer. Temperature/humidity sensors require actuating triggers that show the flap opening of shape memory polymer or with a color-changing time of thermochromic pigment lower than 17 seconds.

Increase in Discharge Capacity of Li Battery Assembled with Electrochemically Prepared V2O5/polypyrrole-composite-film Cathode

  • Kim, You-Na;Kim, Joo-Seong;Thieu, Minh-Triet;Dinh, Hung-Cuong;Yeo, In-Hyeong;Cho, Won-Il;Mho, Sun-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3109-3114
    • /
    • 2010
  • Flexible composite films of $V_2O_5$ and conductive polypyrrole ($V_2O_5$/PPy) were grown by facile electrochemical polymerization, wherein an anodization potential was applied to the substrate electrode in an electrolyte solution containing pyrrole monomer and dispersed $V_2O_5$ particles. The coating of polypyrrole (PPy) on the surface of $V_2O_5$ particles was induced by the oxidative catalytic action of $V_2O_5$ during the electrochemical polymerization of pyrrole. PPy in the composite film connects the isolated $V_2O_5$ particles. This results in the formation of conductive networks in the composite film cathode, thereby enhancing the Li+ ion diffusion to the surface of the isolated $V_2O_5$ particles and thus increasing the accessibility of the $Li^+$ ions. The specific capacity tests of the Li rechargeable batteries revealed that the discharge capacity of this composite film cathode was higher, i.e., $497\;mAhg^{-1}$, than that of $V_2O_5$/PPy powder or pristine $V_2O_5$.

Micro Joining Process Using Solderable Anisotropic Conductive Adhesive (Solderable 이방성 도전성 접착제를 이용한 마이크로 접합 프로세스)

  • Yim, Byung-Seung;Jeon, Sung-Ho;Song, Yong;Kim, Yeon-Hee;Kim, Joo-Heon;Kim, Jong-Min
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.73-73
    • /
    • 2009
  • In this sutdy, a new class ACA(Anisotropic Conductive Adhesive) with low-melting-point alloy(LMPA) and self-organized interconnection method were developed. This developed self-organized interconnection method are achieved by the flow, melting, coalescence and wetting characteristics of the LMPA fillers in ACA. In order to observe self-interconnection characteristic, the QFP($14{\times}14{\times}2.7mm$ size and 1mm lead pitch) was used. Thermal characteristic of the ACA and temperature-dependant viscosity characteristics of the polymer were observed by differential scanning calorimetry(DSC) and torsional parallel rheometer, respectively. A electrical and mechanical characteristics of QFP bonding were measured using multimeter and pull tester, respectively. Wetting and coalescence characteristics of LMPA filler particles and morphology of conduction path were observed by microfocus X-ray inspection systems and cross-sectional optical microscope. As a result, the developed self-organized interconnection method has a good electrical characteristic($2.41m{\Omega}$) and bonding strength(17.19N) by metallurgical interconnection of molten solder particles in ACA.

  • PDF

Stretchable Current Collector Composing of DMSO-dopped Nano PEDOT:PSS Fibers for Stretchable Li-ion Batteries (신축성 리튬이온전지를 위한 DMSO 도핑 PEDOT:PSS 나노 섬유 집전체)

  • Kwon, O. Hyeon;Lee, Ji Hye;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.93-99
    • /
    • 2021
  • In order to decrease the weight of stretchable energy storage devices, interest in developing lightweight materials to replace metal current collectors is increasing. In this study, nanofibers prepared by electrospinning a conductive polymer, PEDOT:PSS, were used as current collectors for lithium ion batteries. The nanofiber showed improved electrical conductivity by using DMSO, a dopant, and indicated a stretch rate of 30% or more from the elasticity evaluation result. In addition, the use of the nanofiber current collector facilitates penetration of the liquid electrolyte and exhibits the effect of increasing the electronic conductivity through the nanofiber network. The lithium-ion battery using the DMSO-doped PEDOT:PSS@PAM nanofiber current collector indicated a high discharge capacity of 135mAh g-1, and indicated a high capacity retention rate of 73.5% after 1000 cycles. Thus, the excellent electrochemical stability and mechanical properties of conductive nanofibers showed that they can be used as lightweight current collectors for stretchable energy storage devices.

Smart Structural Health Monitoring Using Carbon Nanotube Polymer Composites (탄소나노튜브 고분자 복합체 기반 스마트 구조건전성 진단)

  • Park, Young-Bin;Pham, Giang T.;Wang, Ben;Kim, Sang-Woo
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.1-6
    • /
    • 2009
  • This paper presents an experimental study on the piezoresistive behavior of nanocomposite strain sensors subjected to various loading modes and their capability to detect structural deformations and damages. The electrically conductive nanocomposites were fabricated in the form of a film using various types of thermoplastic polymers and multi-walled carbon nanotubes (MWNTs) at various loadings. In this study, the nanocomposite strain sensors were bonded to a substrate and subjected to tension, flexure, or compression. In tension and flexure, the resistivity change showed dependence on measurement direction, indicating that the sensors can be used for multi-directional strain sensing. In addition, the sensors exhibited a decreasing behavior in resistivity as the compressive load was applied, suggesting that they can be used for pressure sensing. This study demonstrates that the nanocomposite strain sensors can provide a pathway to affordable, effective, and versatile structural health monitoring.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

Effect of Solvent Doping and Post-Treatment on the Characteristics of PEDOT : PSS Conducting Polymer (솔벤트 도핑과 후처리 공정에 따른 전도성 고분자 PEDOT : PSS의 특성 변화)

  • Kim, Jin Hee;Seo, Yoon Kyung;Han, Joo Won;Oh, Ji Yoon;Kim, Yong Hyun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.275-279
    • /
    • 2015
  • Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS) has attracted a great deal of attention as a transparent conductive material for organic solar cells or organic light-emitting diodes due to its high electrical conductivity, optical transparency, and excellent mechanical flexibility. It is well known that a solvent doping for PEDOT : PSS thin-films significantly increases the conductivity of films. In this paper, the effect of various kinds of solvent doping and post-treatment on the electrical and structural properties of PEDOT : PSS thin-films is investigated. The solvent doping greatly increases the conductivity of PEDOT : PSS thin-films up to 884 S/cm. A further enhancement of the conductivity of PEDOT : PSS thin-films is achieved by the solvent post-treatment which raises the conductivity up to 1131 S/cm. The enhancement is mainly caused by the depletion of insulating PSS and forming conducting PEDOT-rich granular networks. Strong optical absorption peaks at the wavelength of 225 nm of PEDOT : PSS thin-films indicate the depletion of insulating PSS by post-treatment. We believe that the solvent post-treatment is a promising method to achieve highly conductive transparent PEDOT : PSS thin-films for applications in efficient, low-cost and flexible organic devices.