• Title/Summary/Keyword: Conductive fiber

Search Result 165, Processing Time 0.023 seconds

Thermal Diffusivity of PEEK/SiC and PEEK/CF Composites (PEEK/SiC와 PEEK/CF 복합재료의 열확산도에 대한 연구)

  • Kim, Sung-Ryong;Yim, Seung-Won;Kim, Dae-Hoon;Lee, Sang-Hyup;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The particulate type silicon carbide (SiC) and fiber type carbon fiber (CF) filler, of similar thermal conductivities, were mixed with polyetheretherketone (PEEK) to investigate the filler effects on the thermal diffusivity. The SiC and CF fillers had a good and uniform dispersion in PEEK matrix. Thermal diffusivities of PEEK composites were measured from ambient temperature up to $200^{\circ}C$ by laser flash method. The diffusivities were decreased as increasing temperature due to the phonon scattering between PEEK-filler and filler-filler interfaces. Thermal diffusivity of PEEK composites was increased with increasing filler content and the thermal conductivities of two-phase system were compared to the experimental results and it gave ideas on the filler dispersion, orientation, aspect ratio, and filler-filler interactions. Nielson equation gave a good prediction to the experimental results of PEEK/SiC. The easy network formation by CF was found to be substantially more effective than SiC and it gave a higher thermal diffusivities of PEEK/CF than PEEK/SiC.

  • PDF

Manufacture of Recycled PET E-Textile by Plasma Surface Modification and CNT Dip-Coating (플라즈마 표면 개질과 CNT 함침공정을 통한 고전도성의 재생PET사 전자섬유)

  • Jun-hyeok Jang;Sang-un Kim;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.79-86
    • /
    • 2023
  • This study aims to create a highly conductive E-textile made by recycling PET with a Dip-coating process. PET fiber with hydrophobic properties is characterized by the difficulty in imparting great conductivity when both Virgin and Recycled are made of electronic fibers through a Dip-coating process. To advance the effectiveness of the Dip-coating process, a sample made of recycled PET was surface modified for 50 w 5 minutes and 10 minutes employing a Covance-2mprfq model from FEMTO SCIENCE. After that, the sample was immersed in an SWCNT dispersion (.1 wt%, Carbon Co., Ltd.) for 5 minutes, and then dip coating was conducted to allow the solution to permeate well into the sample through a padder (DAELIM lab). After the procedure was completed, the resistance measurement was measured with a multimeter at both ends and then accurately remeasured with a wider electrode. As a result of this contemplation, it was affirmed that great conductivity might be given through an impregnation process through the plasma surface modification. When the surface modification was performed for 10 minutes, the resistance was reduced by up to 2.880 times. Dependent on the results of this research, E-fibers employed in the smart wearable sector can also be made of recycled materials, improving smart wearable products that can save oil resources and reduce carbon emissions.

Development of Self-trainer Fitness Wear Based on Silicone-MWCNT Sensor (실리콘-탄소나노튜브 센서 기반의 셀프트레이너 피트니스 웨어 개발)

  • Cho, Seong-Hun;Kim, Kyung-Mi;Cho, Ha-Kyung;Won, You-Seuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.493-503
    • /
    • 2018
  • Recently, as living standards have improved, many people are becoming more interested in health, and self-training is increasing through exercise to prevent and manage pre-illness. In general, an imbalance of muscles causes asymmetry of posture, which can cause various diseases by accompanying an adjustment force, circulation action, displacement of internal organs, etc.. In this study, the development of fitness software that can be self - training among smart wears has attracted considerable attention in recent years. In this study, a technology was proposed for the commercialization of self - trainer fitness wear by a simulation through Android - based applications. Self - trainer fitness software was developed by combining a conductive polymer, fashion design, sewing, and electric and electronic technology to monitor the unbalance of the muscles during exercise and make smart wear that can calibrate the asymmetry by oneself. In particular, a polymer sensor was fabricated by deriving the optimal MWCNT concentration, and the electrode signal was collected by attaching the electrode to the optimal position, where the electrode signal line using the conductive fiber was designed and attached to collect the signal. A signal module that converts the bio-signals collected through electrical signal conversion and transmits them using Bluetooth communication was designed and manufactured. Self-trainer fitness software that can be commercialized was developed by combining noise cancellation with Android-based self-training application using a software algorithm method.

Characterization of Milled Carbon Fibers-filled Pitch-based Carbon Paper for Gas Diffusion Layer (미분쇄 탄소섬유가 첨가된 피치계 탄소섬유기반 기체확산층용 탄소종이 특성)

  • Ham, Eun-Kwang;Yoon, Dong-Ho;Kim, Byoung-Suhk;Seo, Min-Kang
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.262-268
    • /
    • 2016
  • In this work, the pitch-based carbon paper (P-CP) was prepared by re-impregnating of binder pitches and PAN-based milled carbon fibers (MCF) at low temperature carbonization process. The influence of MCF content on physicochemical properties of MCF/P-CP was investigated. As a result, the tensile strength of MCF/P-CP was increased sharply from 10 wt.% to 20 wt.% of MCF. Also, the increase of MCF content led to the decrease of interfacial contact resistivity and the improvement of electrical and thermal conductivity of MCF/P-CP. These results were probably due to the increase of density of MCF/P-CP, resulting in the formation of electrically and thermally conductive paths of the carbon paper.

Manufacture and performance test of the composite cantilever arm for electrical discharge wire cutting machine (방전 가공기용 복합재료 외팔보의 제작 및 성능평가)

  • 최진호
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.39-46
    • /
    • 2000
  • Electrical discharge machining (EDM) cuts metal by discharging electric current across a thin gap between tool and workpiece. Electrical discharge wire cutting, a special form of EDM, uses a continuously moving conductive wire as an electrode, and is widely used for the manufacture of punches, dies and stripper plates. In the wire cutting process, the moving wire is usually supported by cantilever arm and wire guides. As the wire traveling speed has been increased in recent years to improve productivity, the vibration of the cantilever arm occurs, which reduces the positional accuracy of the machine. Therefore, the design and manufacture of the cantilever arm with high dynamic characteristics have become important as the machining speed increases. In this paper, the cantilever arm for guiding the moving wire was designed and manufactured using carbon fiber epoxy composite in order to improve the static and dynamic characteristics. Specimens for the composite cantilever arm were manufactured and tested to investigate the effect of the number of reinforcing plies and length fitted to steel flange on the load capacity. Also, the finite element analysis using layer and contact elements was performed to compare the calculated results with the experimental ones. From the results, the prototype of the composite cantilever arm for the electrical discharge wire cutting machine was manufactured and the static and dynamic characteristics were compared with those of the conventional steel cantilever arm.

  • PDF

Green synthesis of fluorescent carbon dots from carrot juice for in vitro cellular imaging

  • Liu, Yang;Liu, Yanan;Park, Mira;Park, Soo-Jin;Zhang, Yifan;Akanda, Md Rashedunnabi;Park, Byung-Yong;Kim, Hak Yong
    • Carbon letters
    • /
    • v.21
    • /
    • pp.61-67
    • /
    • 2017
  • We report the use of carrot, a new and inexpensive biomaterial source, for preparing high quality carbon dots (CDs) instead of semi-conductive quantum dots for bioimaging application. The as-derived CDs possessing down and up-conversion photoluminescence features were obtained from carrot juice by commonly used hydrothermal treatment. The corresponding physiochemical and optical properties were investigated by electron microscopy, fluorescent spectrometry, and other spectroscopic methods. The surfaces of obtained CDs were highly covered with hydroxyl groups and nitrogen groups without further modification. The quantum yield of as-obtained CDs was as high as 5.16%. The cell viability of HaCaT cells against a purified CD aqueous solution was higher than 85% even at higher concentration ($700{\mu}g\;mL^{-1}$) after 24 h incubation. Finally, CD cultured cells exhibited distinguished blue, green, and red colors, respectively, during in vitro imaging when excited by three wavelength lasers under a confocal microscope. Offering excellent optical properties, biocompatibility, low cytotoxicity, and good cellular imaging capability, the carrot juice derived CDs are a promising candidate for biomedical applications.

Electrical and Mechanical Properties of Cu/Carbon Nano-Particle Hybrids Composites by Cathodic Electrophoresis (음극 전기영동법에 의해 제조된 구리/탄소 나노입자 하이브리드 복합재료의 전기적/기계적 특성 평가)

  • Lee, Wonoh;Lee, Sang-Bok;Choi, Oyoung;Yi, Jin-Woo;Byun, Joon-Hyung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1130-1135
    • /
    • 2010
  • Cu/carbon nano-particle hybrids were fabricated through the cathodic electrophoretic deposition (EPD) process. CNT and CNF nano-particles were modified to give positive charges by polyethyleneimine (PEI) treatment before depositing them on the substrate. Since a Cu plate was used as an anode in the EPD process, Cu particles were also deposited along with the carbon nano-particles. Experimental observation showed the nano-hybrids constructed a novel formicary-like nano-structure which is strong and highly conductive. Utilizing the hybrids, carbon fiber composites were manufactured, and their electrical conductivity and interlaminar shear strength were measured. In addition, the deposition morphology and failure surface were examined by SEM observations. Results demonstrated that the electrical conductivities in the through-the-thickness direction and the interlaminar shear strength significantly increased by 350~2100% and 14%, respectively.

Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator

  • Azizkhani, Mohammadbagher;sangsefidi, Alireza;Kadkhodapour, Javad;Anaraki, Ali Pourkamali
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.167-177
    • /
    • 2021
  • Due to various benefits such as unlimited degrees of freedom, environment adaptability, and safety for humans, engineers have used soft materials with hyperelastic behavior in various industrial, medical, rescue, and other sectors. One of the applications of these materials in the fabrication of bending soft actuators (SA) is that they have eliminated many problems in the actuators such as production cost, mechanical complexity, and design algorithm. However, SA has complexities, such as predicting and monitoring behavior despite the many benefits. The first part of this paper deals with the prediction of SA behavior through mathematical models such as Ogden and Darijani, and its comparison with the results of experiments. At first, by examining different geometric models, the cubic structure was selected as the optimal structure in the investigated models. This geometrical structure at the same pressure showed the most significant bending in the simulation. The simulation results were then compared with experimental, and the final gripper model was designed and manufactured using a 3D printer with silicone rubber as for the polymer part. This geometrical structure is capable of bending up to a 90-degree angle at 70 kPa in less than 2 seconds. The second section is dedicated to monitoring the bending behavior created by the strain sensors with different sensitivity and stretchability. In the fabrication of the sensors, silicon is used as a soft material with hyperelastic behavior and carbon fiber as a conductive material in the soft material substrate. The SA designed in this paper is capable of deforming up to 1000 cycles without changing its characteristics and capable of moving objects weigh up to 1200 g. This SA has the capability of being used in soft robots and artificial hand making for high-speed objects harvesting.

Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes (나노입자 코팅 CFRP의 모의 낙뢰 충격손상 후 압축시험에서의 음향방출 거동)

  • Shin, Jae-Ha;Kwon, Oh-Yang;Seo, Seong-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.62-67
    • /
    • 2011
  • Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10~40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terms of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes.

Effect of Carboxylic Acid Group of Functionalized Carbon Nanotubes on Properties of Electrospun Polyacrylonitrile (PAN) Fibers (기능화된 탄소나노튜브의 카르복실산이 전기방사된 폴리아크릴로니트릴 섬유의 물성에 미치는 영향)

  • Park, Ok-Kyung;Kim, Ju-Hyung;Lee, Sung-Ho;Lee, Joong-Hee;Chung, Yong-Sik;Kim, Jun-Kyung;Ku, Bon-Cheol
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.472-477
    • /
    • 2011
  • To study the effects of the acid group of functionalized MWNT (multiwalled carbon nanotube) on the thermal and mechanical properties of polyacrylonitrile(PAN) nanofibers, acid ($H_2SO_4/HNO_3$) treated MWNT (O-MWNT) were further functionalized by diazonium salt reaction with 5-aminoisophthalic acid (IPA). Compared to O-MWNT, IPA-MWNT with isophthalic acid group showed a better dispersion stability in polar solvents and IPA-MWNT/PAN composite film displayed lower heat of reaction (${\Delta}H$) than that of homo PAN when stabilized under air atmosphere. The continuous electrospun fibers were prepared using a conductive water bath. PAN fibers containing 1 wt% of IPA-MWNT showed an increase of tensile strength by 100% and tensile modulus by 240% compared to the PAN fibers without IPA-MWNT.