• Title/Summary/Keyword: Conductive Metal

Search Result 314, Processing Time 0.026 seconds

Memristive Devices Based on RGO Nano-sheet Nanocomposites with an Embedded GQD Layer (저결함 그래핀 양자점 구조를 갖는 RGO 나노 복합체 기반의 저항성 메모리 특성)

  • Kim, Yongwoo;Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.54-58
    • /
    • 2021
  • The RGO with controllable oxygen functional groups is a novel material as the active layer of resistive switching memory through a reduction process. We designed a nanoscale conductive channel induced by local oxygen ion diffusion in an Au / RGO+GQD / Al resistive switching memory structure. A strong electric field was locally generated around the Al metal channel generated in BIL, and the local formation of a direct conductive low-dimensional channel in the complex RGO graphene quantum dot region was confirmed. The resistive memory design of the complex RGO graphene quantum dot structure can be applied as an effective structure for charge transport, and it has been shown that the resistive switching mechanism based on the movement of oxygen and metal ions is a fundamental alternative to understanding and application of next-generation intelligent semiconductor systems.

Electrical Characterization of Nanoscale $Au/TiO_2$ Schottky Diodes Probed with Conductive Atomic Force Microscopy

  • Lee, Hyunsoo;Van, Trong Nghia;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.290.1-290.1
    • /
    • 2013
  • The electrical characterization of Au islands on TiO2 at nanometer scale (as a Schottky nanodiode) has been studied with conductive atomic force microscopy in ultra-high vacuum. The diverse sizes of the Au islands were formed by using self-assembled patterns on n-type TiO2 semiconductor film using the Langmuir-Blodgett process. Local conductance images showing the current flowing through the TiN coated AFM probe to the surface of the Au islands on TiO2 was simultaneously obtained with topography, while a positive sample bias is applied. The boundary of the Au islands revealed a higher current flow than that of the inner Au islands in current AFM images, with the forward bias presumably due to the surface plasmon resonance. The nanoscale Schottky barrier height of the Au/TiO2 Schottky nanodiode was obtained by fitting the I-V curve to the thermionic emission equation. The local resistance of the Au/TiO2 nanodiode appeared to be higher at the larger Au islands than at the smaller islands. The results suggest that conductive atomic force microscopy can be used to reveal the I-V characterization of metal size dependence and the electrical effects of surface plasmon on a metal-semiconductor Schottky diode at nanometer scale.

  • PDF

Synthesis of Silver Nanofibers Via an Electrospinning Process and Two-Step Sequential Thermal Treatment and Their Application to Transparent Conductive Electrodes (전기방사법과 이원화 열처리 공정을 통한 은 나노섬유의 합성 및 투명전극으로의 응용)

  • Lee, Young-In;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.562-568
    • /
    • 2012
  • Metal nanowires can be coated on various substrates to create transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these metal nanowire based transparent conductive films is that the resistance between the nanowires is still high because of their low aspect ratio. Here, we demonstrate high-performance transparent conductive films with silver nanofiber networks synthesized by a low-cost and scalable electrospinning process followed by two-step sequential thermal treatments. First, the PVP/$AgNO_3$ precursor nanofibers, which have an average diameter of 208 nm and are several thousands of micrometers in length, were synthesized by the electrospinning process. The thermal behavior and the phase and morphology evolution in the thermal treatment processes were systematically investigated to determine the thermal treatment atmosphere and temperature. PVP/$AgNO_3$ nanofibers were transformed stepwise into PVP/Ag and Ag nanofibers by two-step sequential thermal treatments (i.e., $150^{\circ}C$ in $H_2$ for 0.5 h and $300^{\circ}C$ in Ar for 3 h); however, the fibrous shape was perfectly maintained. The silver nanofibers have ultrahigh aspect ratios of up to 10000 and a small average diameter of 142 nm; they also have fused crossing points with ultra-low junction resistances, which result in high transmittance at low sheet resistance.

Soft Interconnection Technologies in Flexible Electronics (플렉시블 전자소자의 유연전도성 접합 기술)

  • Lee, Woo-Jin;Lee, Seung-Min;Kang, Seung-Kyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.33-41
    • /
    • 2022
  • Recent necessities of research have emerged about soft interconnection technologies for stable electric connections in flexible electronics. Mechanical failure in conventional metal solder interconnection can be solved as soft interconnections based on a small elastic modulus and a thin thickness. To enable stable electric connection while improving mechanical properties, highly conductive materials be thinned or mixed with a material that has a small elastic modulus. Representative soft interconnection technologies such as thin-film metallization, flexible conductive adhesives, and liquid metal interconnections are presented in this paper, and be focused on mechanical/electric properties improving strategies and their applications.

Metal Deposit Distribution in Barrel Plating of Partially Conductive Load

  • 이완구
    • Journal of the Korean Professional Engineers Association
    • /
    • v.16 no.3
    • /
    • pp.68-73
    • /
    • 1983
  • The metal deposition behavior in the barrel tin plating has been studied for the electronic DIP products, and tried to find out some modified factors in order to explain partial ,current flow behavior of this load. The deposition distribution characteristics for DTP products should be classified with the normal barrel plating as partially conductive load. Deposit distribution curves obtained from one-dimensional model have shown strong dependence n the applied current density, rotating speed of barrel and metal ion concentration of the solution. Theoretical formula J=$\delta$'/${\beta}$-{-c$^3$/${\gamma}$-exp-(1-${\alpha}$)n${\Phi}$} derived from one-dimensional porous model has been proposed for the barrel plating behavior where higher overpotential and concentration changes take place during barrel plating.

  • PDF

Characteristics of ITO Transparent Conductive Oxide by DC Magnetron Sputter Methode (DC 마그네트론 스퍼터를 이용한 ITO 투명도전막 특성)

  • Cho, Ki-Taek;Choi, Hyun;Yang, Seung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.269-269
    • /
    • 2007
  • 최근 평판디스플레이 산업이 성장함에 따라 품질향상을 위한 연구가 활발히 진행중이며 또한, 부품 소재 개발에 박차를 가하고 있다. 대형 평판디스플레이 중 낮은 전력소모와 광시야각이 우수한 TFT-LCD가 각광받고 있다. TFT-LCD 소자의 투명전극으로 사용되기 위해서는 면저항 10~1k Ohm/sq., 광투과율 85% 이상의 특성이 요구되며 ITO(Indium Tin Oxide의 약자) 타겟을 스퍼터링한 박막이 일반적으로 사용되고 있다. 본 연구에서는 $In_2O_3$ 나노 분말 제조 공법으로 제작된 ITO 타겟을 사용하여 양산성 및 대형화에 적합한 DC 마그네트론 스퍼터 방식으로 투명전극을 제조하였다. 일반적으로 사용되는 고정식 DC 마그네트론 스퍼터 방식은 타겟표면에 재증착(back deposition)되는 저급산화물로 인해 이물 또는 노즐(Nodule) 이 형성되고 이로 인해 비이상적이고 불안정한 방전 플라즈마가 박막의 특성을 저하시킨다. 이러한 문제점을 해결하기 위해 이동식 DC 마그네트론 스퍼터 방식을 채택하였으며 대형 타겟을 이용한 대형화 기판 제작과 안정적인 sputter yield로 인해 uniformity가 우수한 ITO 박막을 제조하였다. ITO 박막의 저면저항 고투과율 특성을 구현하기 위해 공정변수인 산소분압, 전류밀도(DC power) 그리고 증착온도에 따른 ITO 박막의 미세조직과 결정성을 관찰하였으며 전기적 특성을 분석하였다.

  • PDF

A study on the fabrication of heatable glass using conductive metal thin film on Low-e glass (로이유리의 전도성 금속박막을 이용한 발열유리 제작에 관한 연구)

  • Oh, Chaegon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.105-112
    • /
    • 2018
  • This paper proposes a method for fabricating heatable glass using the conduction characteristics of metal thin films deposited on the surface of Low-e(Low emissivity) glass. The heating value of Low-e glass depends on the Joule heat caused by Low-e glass sheet resistance. Hence, its prediction and design are possible by measuring the sheet resistance of the material. In this study, silver electrodes were placed at 50 mm intervals on a soft Low-e glass sample with a low emissivity layer of 11 nm. This study measured the sheet resistance using a 4-point probe, predicted the power consumption and heating value of the Low-e glass, and confirmed the heating performance through fabrication and experience. There are two conventional methods for manufacturing heatable glass. One is a method of inserting nichrome heating wire into normal glass, and the other is a method of depositing a conductive transparent thin film on normal glass. The method of inserting nichrome heating wire is excellent in terms of the heating performance, but it damages the transparency of the glass. The method for depositing a conductive transparent thin film is good in terms of transparency, but its practicality is low because of its complicated process. This paper proposes a method for manufacturing heatable glass with the desired heating performance using Low-e glass, which is used mainly to improve the insulation performance of a building. That is by emitting a laser beam to the conductive metal film coated on the entire surface of the Low-e glass. The proposed method is superior in terms of transparency to the conventional method of inserting nichrome heating wire, and the manufacturing process is simpler than the method of depositing a conductive transparent thin film. In addition, the heat characteristics were compared according to the patterning of the surface thin film of the Low-e glass by an emitting laser and the laser output conditions suitable for Low-e glass.

Patch-type large strain sensor using elastomeric composite filled with carbon nanofibers

  • Yasuoka, Tetsuo;Shimamura, Yoshinobu;Todoroki, Akira
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.146-151
    • /
    • 2013
  • Carbon nanofibers (CNFs) are electrically conductive. When CNFs are used as fillers in resin, this electrical conductivity can be yielded without adversely affecting the mechanical properties of the resin. When an elastomer is adopted as the resin, a conductive elastomer can then be produced. Due to its flexibility and conductive properties, a large strain sensor based on changes in resistivity may be produced, for strain sensing in flexible structures. In this study, a patch-type large strain sensor using resistivity change in a CNF/elastomer composite was proposed. The measurement limits of the sensor were investigated experimentally, and the limit was found to be 40%, which greatly exceeded the limits of conventional metal-foiled strain gages. Also, the proposed CNF/elastomer large strain sensor can be used to measure flexible materials, while conventional strain gages cannot be used to measure such strains.