• 제목/요약/키워드: Conductive Fabric Material

검색결과 19건 처리시간 0.022초

폴리아닐린/나일론 6 복합직물의 전기 전도도 향상 연구 (Conductivity Improvement of Polyaniline/Nylon 6 Fabrics)

  • 오경화;성재환;김성훈
    • 폴리머
    • /
    • 제24권5호
    • /
    • pp.673-681
    • /
    • 2000
  • 플라즈마 처리가 나일론 6 직물의 표면 특성과 폴리아닐린/나일론 6 복합직물의 전도도에 미치는 영향을 연구하였다. 산소 플라즈마로 처리한 나일론 6 직물의 표면을 XPS 분석을 통해 확인한 결과 C-O, C-OH 등의 관능기가 도입되었으며, 이는 직물과 폴리아닐린의 결합력을 향상시켜 전기 전도도와 폴리아닐린 부착량을 증가시켰다. 또한 산소 플라즈마로 처리된 폴리아닐린/나일론 6 복합직물은 세탁과 마모에서도 우수한 안정성을 나타내었다. 초음파 처리는 매질에 발생된 cavitation과 진동에 의해 직물 내부로 아닐린을 확산시키는데 효과적이었으며, 이는 폴리아닐린/나일론 6 복합직물의 전기 전도도를 크게 향상시켰다. 아닐린의 농도와 중합욕에 침지 휫수가 증가함에 따라 전기 전도도와 복합직물의 형태안정성에 대한 영향을 살펴보았는데, 단량체 농도는 0.5M 까지는 증가함에 따라 전도도가 향상되었으며, 침지 횟수가 증가함에 따라서도 전도도가 향상되었다.

  • PDF

ECG 생체신호 측정을 위한 실용적 U-헬스케어 의복개발 (Development of the Practical Garment Apparatus to Measure Vital Sign of ECG for U-Health Care)

  • 박혜준;홍경희;김승환;신승철
    • 한국의류학회지
    • /
    • 제31권2호
    • /
    • pp.292-299
    • /
    • 2007
  • Development of portable device measuring the vital sign continuously with no limit of time and space is absolutely prerequisite for the U-health care that grafts the ubiquitous concept into medical system. Accordingly, it requires to develop a garment style apparatus for measuring vital-sign that is easy to wear on for a long time period. This study suggests a method to improve the insulation of electric cable and the skin adhesion of electrode by integrating the electric conductive material to garment, in order to develop a garment apparatus for measuring ECG for U-health care. Results of the research are as follows; In order to provide the adjacent conductive yarns with insulation, braid with narrow woven end was interlaced using polyester yarn. As a result, the direct contact between electric conductive yarns was restrained, which would be interposed into pin-tuck structured cable. Washable silicone gel applied around the electrode made of electric conductive fabric improved the adhesion, which prevents electrodes from dropping off from the skin surface during body movement. ECG signals on the human subject were tested using the garment apparatus developed by the above method. And the result was that the clear QRS wave formation in the typical form of ECG could be measured in both conditions of still and moving state as well. The result of this study is expected to contribute for the production of U-health care related medical apparatus by accelerating the practical uses of the garment measuring vital sign at a reasonable price.

그래핀 옥사이드의 에어로졸 분무열분해 공정을 통한 면직물의 전기전도성 및 물성 평가 (Application and Functionalization of Graphene Oxide on Cotton Fabric Via Aerosol Spray Pyrolysis)

  • 엄현지;조길수
    • 한국의류산업학회지
    • /
    • 제24권1호
    • /
    • pp.138-145
    • /
    • 2022
  • Today, graphene loaded textiles are being considered promising smart clothing due to their high conductivity. In this study, we reported reduced graphene oxide(r-GO) deposited pure cotton fabrics fabricated with a colloidal solution of graphene(GO), using a one-step aerosol spray pyrolysis(ASP) process and their potential application on smart textiles. The ASP process is advantageous in that it is easily implementable and can be applied for continuous processing. Moreover, this process has never been applied to deposit r-GO on pure cotton fabric. The field emission-scanning microscopy (FE-SEM) observation, Fourier transform-infrared(FT-IR) analysis, Raman spectroscopy, X-ray diffraction(XRD) analysis, and ultraviolet transmittance(UVT) were used to evaluate material properties of the r-GO colloids. The resistance was also measured to evaluate the electrical conductivity of the specimens. The results revealed that the r-GO was successfully deposed on specimens, and the specimen with the highest electrical conductivity demonstrated an electrical resistance value of 2.27 kΩ/sq. Taken together, the results revealed that the ASP method demonstrated a high potential for effective deposition of r-GO on cotton fabric specimens and is a prospect for the development of conductive cotton-based smart clothing. Therefore, this study is also meaningful in that the ASP process can be newly applied by depositing r-GO on the pure cotton fabric.

Flexible Energy-storage Devices: Maneuvers and Intermediate Towards Multi-functional Composites

  • Son, Ji Myeong;Oh, Il Kwon
    • Composites Research
    • /
    • 제31권6호
    • /
    • pp.355-364
    • /
    • 2018
  • Flexible energy-storage devices (FESDs) have been studied and developed extensively over the last few years because of demands in various fields. Since electrochemical performance and mechanical flexibility must be taken into account together, different framework from composition of conventional energy-storage devices (ESDs) is required. Numerous types of electrodes have been proposed to implement the FESDs. Herein, we review the works related to the FESDs so far and focus on free-standing electrodes and, especially substrate-based ones. The way to utilize carbon woven fabric (CF) or carbon cloth (CC) as flexible substrates is quite simple and intuitive. However, it is meaningful in the point of that the framework exploiting CF or CC can be extended to other applications resulting in multifunctional composites. Therefore, summary, which is on utilization of carbon-based material and conductive substrate containing CF and CC for ESDs, turns out to be helpful for other researchers to have crude concepts to get into energy-storage multi-functional composite. Moreover, polymer electrolytes are briefly explored as well because safety is one of the most important issues in FESDs and the electrolyte part mainly includes difficult obstacles to overcome. Lastly, we suggest some points that need to be further improved and studied for FESDs.

인장강도가 뛰어난 직물집전체를 이용한 탄소전극의 축전식 탈염공정에서의 제염효과 (The Salt Removal Efficiency Characteristics of Carbon Electrodes Using Fabric Current Collector with High Tensile Strength in a Capacitive Deionization Process)

  • 성두리;김대수
    • Korean Chemical Engineering Research
    • /
    • 제58권3호
    • /
    • pp.466-473
    • /
    • 2020
  • 직물집전체는 에너지 효율이 높은 담수화 방식인 축전식탈염(Capacitive deionization: CDI)시스템에서 유망한 전극 재료가 될 수 있다. 직물집전체의 매력적인 특징 중 하나는 인장강도가 강하다는 것인데, 기계적 강도가 약한 그라파이트 호일 전극의 대안이 될 수 있다. 또한 섬유적 특성으로 인하여 쉽게 형상을 만들 수 있고, 다공성 물질이라는 점과 섬유 간 공간은 수용성 매질의 흐름을 원활하게 해 준다. 본 연구에 사용된 섬유는 도전성 LM fiber와 carbon fiber를 사용한 방적사를 이용하여 직조 구조로 만들어졌으며, 인장강도는 319 MPa로 그라파이트 호일에 비해서 약 60 배 정도 더 강하다. 전극슬러리의 점도, 흡착전압, 공급액의 유량, 공급액의 농도를 변화시켜 가면서 염 제거효율을 측정하여 결과를 분석하였다. NaCl 200 mg/L, 20 ml/min, 흡착전압 1.5 V 조건에서, 단위 셀에서 43.9%, 100개의 셀을 적층한 모듈에서는 59.8%의 염 제거 효율을 각각 보였다. 단위 셀에서는 흡착전압이 1.3, 1.4, 1.5 V로 증가함에 따라 염 제거효율이 증가하다가 1.6과 1.7 V로 증가하면서 염 제거 효율은 감소하였다. 그러나 100 셀 적층 모듈에서는 1.5 V 이상의 전압에서도 염 제거효율이 완만한 증가세를 나타내었다. 공급액의 유량을 증가시켰을 때 염 제거율은 감소하였고, 또한 공급액의 농도를 증가시켰을 때에도 염 제거율은 감소하였다.

운전자의 체압 분포 및 시트변형에 대한 정량화 측정시스템 (Body Pressure Distribution and Textile Surface Deformation Measurement for Quantification of Automotive Seat Design Attributes)

  • 권영은;김윤영;이용구;이동규;권오원;강신원;이강호
    • 센서학회지
    • /
    • 제27권6호
    • /
    • pp.397-402
    • /
    • 2018
  • Proper seat design is critical to the safety, comfort, and ergonomics of automotive driver's seats. To ensure effective seat design, quantitative methods should be used to evaluate the characteristics of automotive seats. This paper presents a system that is capable of simultaneously monitoring body pressure distribution and surface deformation in a textile material. In this study, a textile-based capacitive sensor was used to detect the body pressure distribution in an automotive seat. In addition, a strain gauge sensor was used to detect the degree of curvature deformation due to high-pressure points. The textile-based capacitive sensor was fabricated from the conductive fabric and a polyurethane insulator with a high signal-to-noise ratio. The strain gauge sensor was attached on the guiding film to maximize the effect of its deformation due to bending. Ten pressure sensors were placed symmetrically in the hip area and six strain gauge sensors were distributed on both sides of the seat cushion. A readout circuit monitored the absolute and relative values from the sensors in realtime, and the results were displayed as a color map. Moreover, we verified the proposed system for quantifying the body pressure and fabric deformation by studying 18 participants who performed three predefined postures. The proposed system showed desirable results and is expected to improve seat safety and comfort when applied to the design of various seat types. Moreover, the proposed system will provide analytical criteria in the design and durability testing of automotive seats.

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

Design and SAR Analysis of Wearable Antenna on Various Parts of Human Body, Using Conventional and Artificial Ground Planes

  • Ali, Usman;Ullah, Sadiq;Khan, Jalal;Shafi, Muhammad;Kamal, Babar;Basir, Abdul;Flint, James A;Seager, Rob D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.317-328
    • /
    • 2017
  • This paper presents design and specific absorption rate analysis of a 2.4 GHz wearable patch antenna on a conventional and electromagnetic bandgap (EBG) ground planes, under normal and bent conditions. Wearable materials are used in the design of the antenna and EBG surfaces. A woven fabric (Zelt) is used as a conductive material and a 3 mm thicker Wash Cotton is used as a substrate. The dielectric constant and tangent loss of the substrate are 1.51 and 0.02 respectively. The volume of the proposed antenna is $113{\times}96.4{\times}3mm^3$. The metamaterial surface is used as a high impedance surface which shields the body from the hazards of electromagnetic radiations to reduce the Specific Absorption Rate (SAR). For on-body analysis a three layer model (containing skin, fats and muscles) of human arm is used. Antenna employing the EBG ground plane gives safe value of SAR (i.e. 1.77W/kg<2W/kg), when worn on human arm. This value is obtained using the safe limit of 2 W/kg, averaged over 10g of tissue, specified by the International Commission of Non Ionization Radiation Protection (ICNIRP). The SAR is reduced by 83.82 % as compare to the conventional antenna (8.16 W/kg>2W/kg). The efficiency of the EBG based antenna is improved from 52 to 74 %, relative to the conventional counterpart. The proposed antenna can be used in wearable electronics and smart clothing.

캥거루 케어를 반영한 스마트 감성 매트의 개발 (The Development of the Smart Sensibility Mat with Kangaroo Mother Care)

  • 조수민
    • 감성과학
    • /
    • 제20권2호
    • /
    • pp.171-178
    • /
    • 2017
  • 캥거루 케어의 특징을 반영하여 신생아의 감성에 긍정적인 영향을 미치는 스마트 감성 매트(SSM; Smart Sensibility Mat)를 개발, 제작하였다. 청감 자극의 경우 사전에 녹음된 어머니의 심장박동소리와 목소리를 30dB로 제공할 수 있는 블루투스 스피커를 매트에 삽입하였다. 촉감 자극의 경우 $32^{\circ}C$의 일정한 온도를 제공하기 위해 실리콘 소재의 온수 튜브를 매트의 표면에 삽입하고 자동온도조절장치와 연결하였다. 매트의 전체에 균일한 온도 제공을 위해 열전도성 실을 삽입한 직물을 매트 표면에 부착하였다. 면 패드로 매트를 감싼 후 피부 접촉과 비슷한 촉감 자극을 주기 위해 폴리우레탄 폼을 매트 표면에 접착하였다. SSM이 신생아의 감성에 미치는 효과를 보기 위해 생후 2주 이내의 건강한 신생아 10명을 대상으로 일반 매트(GM; General Mat) 및 SSM에 있을 때 생리신호인 심박수, 호흡수와 체온을 10분 간격으로 2회씩 측정하였다. 이를 3일에 걸쳐 1일 1회씩 측정한 후 대응표본 t검정을 실시하였다. 그 결과, GM에 있을 때 보다 SSM에 있을 때 심박수(t=8.131, p<.001)와 호흡수(t=7.227, p<.001)가 정상범위 안에서 유의적으로 감소하였다. 이는 SSM의 감각 자극이 신생아의 심리적 안정에 긍정적인 영향을 미쳐 GM보다 빠른 시간 내에 심리적 안정을 주는데 기여한 것으로 볼 수 있다.