• Title/Summary/Keyword: Conduction losses

Search Result 218, Processing Time 0.023 seconds

SOFT SWITCHING AND LOSS ANALYSIS OF A HALF-BRIDGE DC-DC CONVERTER WITH IGBT-MOSFET PARALLEL SWITCHES

  • Hong, Soon-Chan;Seo, Young-Min;Jang, Dong-Ryul;Yoon, Duck-Yong;Hwang, Yong-Ha
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.713-718
    • /
    • 1998
  • Due to high power ratings and low conduction loss, the IGBT has become more attractive in high power applications. However, its slower characteristics than those of MOSFET cause severe switching losses and switching frequency limitation. This paper proposes the IGBT's soft switching concept with the help of MOSFET, where each of the IGBT and MOSFET plays its role during on-periods and switching instants. Also, the switching losses are analyzed by using the linearized modeling and the modeling and the operations of a converter are investigated to confirm the soft switching of IGBT's.

  • PDF

A study on comparison of efficiency characteristics for half bridge type DC-DC converters (하프브릿지형 DC-DC 컨버터의 효율특성 비교에 관한 연구)

  • Lee Kwang-Tek;Ahn Tae-Young;Kim Sung-Cheol;Ryu Byoung-Woo;Bong Sang-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.356-359
    • /
    • 2006
  • This paper presented the power losses comparison results with the Active clamp Forward, the Asymmetrical half bridge and the Two transistor forward converters. To estimate for conduction losses in the converters, the steady state analysis regard to parasitic resistance and current effective values for main parts of converters was derived. In addition, the theoretical efficiency for the converters with input voltage 400V, output voltage 12V and maximum power 480W was discussed.

  • PDF

A ZCT PWM Boost Converter using parallel MOSFET switch (병렬 MOSFET 스위치를 이용한 ZCT PWM Boost Converter)

  • Kim Tea-Woo;Hur Do-Gil;Kim Hack-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.759-762
    • /
    • 2002
  • A ZCT(Zero Current Transition) PWM(Pulse-Width-Modulation) boost converter using parallel MOSFET switch is proposed in this paper. The IGBT(main switch) of the proposed converter is always turned on with zero current switching and turned off with zero current/zero voltage switching. The MOSFET(auxiliary switch) is also operates with soft switching condition. In addtion to, the proposed converter eliminates the reverse recovery current of the freewheeling diode by adding the resonant inductor, Lr, in series with the main switch. Therefore, the turn on/turn off switching losses of switches are minimized and the conduction losses by using IGBT switch are reduced. In addition to, using parallel MOSFET switch overcomes the switching frequency limitation occurred by current tail. As mentioned above, the characteristics are verified through experimental results.

  • PDF

Analysis, Design, and Implementation of a High-Performance Rectifier

  • Wang, Chien-Ming;Tao, Chin-Wang;Lai, Yu-Hao
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.905-914
    • /
    • 2016
  • A high-performance rectifier is introduced in this study. The proposed rectifier combines the conventional pulse width modulation, soft commutation, and instantaneously average line current control techniques to promote circuit performance. The voltage stresses of the main switches in the rectifier are lower than those in conventional rectifier topologies. Moreover, conduction losses of switches in the rectifier are certainly lower than those in conventional rectifier topologies because the power current flow path when the main switches are turned on includes two main power semiconductors and the power current flow path when the main switches are turned off includes one main power semiconductor. The rectifier also adopts a ZCS-PWM auxiliary circuit to derive the ZCS function for power semiconductors. Thus, the problem of switching losses and EMI can be improved. In the control strategy, the controller uses the average current control mode to achieve fixed-frequency current control with stability and low distortion. A prototype has been implemented in the laboratory to verify circuit theory.

ZVZCS Single-Stage Power Factor Corrected Converter (영전압, 영전류 스위칭 1단 방식 역률 보상 AC/DC 컨버터)

  • Kang, Feel-Soon;Park, Sung-Jun;Kwon, Soon-Jae;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1348-1350
    • /
    • 2000
  • Zero-voltage and zero-current switched single-stage approach with high power factor is presented to reduce the switching losses and to achieve sinusoidal, unity power factor input currents. This single-stage approach, which combines a boost converter used as PFC with a half-bridge converter used as do to do conversion into one power stage, has a simple structure and low cost. At the same time, since the switches of the proposed converter are designed to be turned on at zero-voltage and off at zero-current, the switching losses could be reduced considerably. Detailed analysis and experimental results are presented on the proposed converter, which is operated at constant switching frequency and in discontinuous conduction mode.

  • PDF

A Study of ZC-ZVS PWM Boost Converter (ZC-ZVS PWM 승압형 컨버터에 관한 연구)

  • Kim Tea-Woo;Jung Hyo-Geun;Ahn Hee-Wook;Kim Hack-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.211-214
    • /
    • 2001
  • This paper introduces a ZC-ZVS PWM(Pulse-Width -Modulation) boost converter. The IGBT(main switch) of the proposed converter is always switched at ZCS and soft switching of MOSFET(auxiliary switch) as well. Therefore, the proposed converter minimized the turn on/turn off switching losses of switches and reduced conduction losses by using IGBT switch. Moreover, using paralleled IGBT-MOSFET switch overcame the switching frequency limitation. Therefore high power density system can be realized. As mentioned above, the characteristics are verified through experimental results.

  • PDF

Design and Development of Low-Cost Switched Reluctance Motor Drive System (저가형 스위치드 릴럭턴스 모터 드라이브 시스템 개발)

  • Ha, Keun-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2162-2167
    • /
    • 2009
  • A Low cost and variable speed brushless motor drive system with single switch per phase is presented. The motor drive is realized with a novel two-phase flux-reversal-free switched reluctance motor and a split AC two switch converter. The strategy of the controller and the converter for its realization are described. Comparisons between a split AC converter, asymmetric converter, split DC converter, single controllable switch converter, and N+1 converter are performed for its device rating, cost, switching losses and conduction losses, and converter efficiency. The split AC converter is analyzed and simulated to verify the characteristics of the converter circuitry and control feasibility and the simulation results are presented. The efficiency with various loads is numerically estimated and experimentally compared from viewpoint of subsystem and system in details. The focus of this paper is to compare the presented motor drive system to the asymmetric converter system throughout experiments and demonstrate single switch per phase converter having comparable efficiency as the asymmetric converter system.

A new lossless snubber for DC-DC converters with energy transfer capability

  • Esfahani, Shabnam Nasr;Delshad, Majid;Tavakoli, Mohhamad Bagher
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.385-391
    • /
    • 2020
  • In this paper, a new passive lossless snubber circuit with energy transfer capability is proposed. The proposed lossless snubber circuit provides Zero-Current Switching (ZCS) condition for turn-on instants and Zero-Voltage Switching (ZVS) condition for turn-off instants. In addition, its diodes operate under soft switching condition. Therefore, no significant switching losses occur in the converter. Since the energy of the snubber circuit is transferred to the output, there are no significant conduction losses. The proposed snubber circuit can be applied on isolated and non-isolated converters. To verify the operation of the snubber circuit, a boost converter using the proposed snubber is implemented at 70W. Also, the measured conducted Efficiency Electromagnetic Interference (EMI) of the proposed boost converter and conventional ones are presented which show the effects of proposed snubber on EMI reduction. The experimental results confirm the presented theoretical analysis.

A Single-Stage AC/DC Converter with Low Voltage Stresses and Reduced Switching Losses

  • Kim, Kyu-Tae;Choi, Woo-Young;Kwon, Jung-Min;Kwon, Bong-Hwan
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.823-834
    • /
    • 2009
  • This paper proposes a high-efficiency single-stage ac/dc converter. The proposed converter features low voltage stresses and reduced switching losses. It operates at the boundary of discontinuous- and continuous-conduction modes by employing variable switching frequency control. The turn-on switching loss of the switch can be reduced by turning it on when the voltage across it is at a minimum. The voltage across the bulk capacitor is independent of the output loads and maintained within the practical range for the universal line input, so the problem of high voltage stress across the bulk capacitor is alleviated. Moreover, the voltage stress of the output diodes is clamped to the output voltage, and the output diodes are turned off at zero-current. Thus, the reverse-recovery related losses of the output diodes are eliminated. The operational principles and circuit analysis are presented. A prototype circuit was built and tested for a 150 W (50V/3A) output power. The experimental results verify the performance of the proposed converter.

Power Loss Evaluation in T-Type Three-level Inverters

  • Alemi, Payam;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.75-76
    • /
    • 2012
  • This paper presents an analysis of power losses in three-level T-Type Inverters. The switching loss in different switching frequencies and the conduction loss at different modulation indices and power factors are investigated. Finally, it is shown that the results of analysis coincide with those which resulted from CASPOC software simulation.

  • PDF