• 제목/요약/키워드: Conduction band offset

검색결과 13건 처리시간 0.037초

Band Alignment at CdS/wide-band-gap Cu(In,Ga)Se2 Hetero-junction by using PES/IPES

  • Kong, Sok-Hyun;Kima, Kyung-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권5호
    • /
    • pp.229-232
    • /
    • 2005
  • Direct characterization of band alignment at chemical bath deposition $(CBD)-CdS/Cu_{0.93}(In_{1-x}Ga_x)Se_2$ has been carried out by photoemission spectroscopy (PES) and inverse photoemission spectroscopy (IPES). Ar ion beam etching at the condition of the low ion kinetic energy of 400 eV yields a removal of surface contamination as well as successful development of intrinsic feature of each layer and the interfaces. Especially interior regions of the wide gap CIGS layers with a band gap of $1.4\~1.6\;eV$ were successfully exposed. IPES spectra revealed that conduction band offset (CBO) at the interface region over the wide gap CIGS of x = 0.60 and 0.75 was negative, where the conduction band minimum of CdS was lower than that of CIGS. It was also observed that an energy spacing between conduction band minimum (CBM) of CdS layer and valance band maximum (VBM) of $Cu_{0.93}(In_{0.25}Ga_{0.75})Se_2$ layer at interface region was no wider than that of the interface over the $Cu_{0.93}(In_{0.60}Ga_{0.40})Se_2$ layer.

Ab initio DFT를 통한 Si/SiO2 Band Offset 계산

  • 송호철
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.290-291
    • /
    • 2013
  • Ab initio DFT 계산을 통해서 $Si/SiO_2$ 계면의 Band offset을 계산 했다. Si과 $SiO_2$ 각각의 물질을 계산한 결과로 얻은 로컬 퍼텐셜을 기준으로 Valence band와 Conduction band의 band edge의 위치를 결정할 수 있다. 그리고 계면 계산으로 얻은 로컬포텐셜을 이용하여 두물질의 로컬 퍼텐셜의 상대적인 위치를 결정할 수 있고 이를 이용하여 Band offset을 결정 할 수 있었다.

  • PDF

Effects of barrier height on electron scattering mechanisms in $\delta-doped$ InAlAs/InGaAs/InAlAs Heterostructures

  • Park, H.S.;Vang, S.J.;Kim, J.I.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.955-959
    • /
    • 2004
  • The effects of conduction band offset on 2 dimensional electron gas (2DEG) in N-InAlAs(AlAsSb)/InGaAs/InAlAs (AlAsSb) metamorphic heterostructures (MMHS) are studied. A combination of the Shubnikov-deHaas oscillations and the Hall measurements is used to investigate the electron transport properties of these structures. The mobility in the second subband is higher than that in the first subband in all heterostructures. This is attributed to the fact that electrons in the first subband we, on average, closer to the interface and are therefore scattered more strongly by ionized impurities. The results suggest that intersubband scattering rate is more dominant in structures with higher conduction band offset whereas alloy scattering is found to be more dominant in the higher band offset system.

  • PDF

Inverted structure perovskite solar cells: A theoretical study

  • Sahu, Anurag;Dixit, Ambesh
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1583-1591
    • /
    • 2018
  • We analysed perovskite $CH_3NH_3PbI_{3-x}Cl_x$ inverted planer structure solar cell with nickel oxide (NiO) and spiroMeOTAD as hole conductors. This structure is free from electron transport layer. The thickness is optimized for NiO and spiro-MeOTAD hole conducting materials and the devices do not exhibit any significant variation for both hole transport materials. The back metal contact work function is varied for NiO hole conductor and observed that Ni and Co metals may be suitable back contacts for efficient carrier dynamics. The solar photovoltaic response showed a linear decrease in efficiency with increasing temperature. The electron affinity and band gap of transparent conducting oxide and NiO layers are varied to understand their impact on conduction and valence band offsets. A range of suitable band gap and electron affinity values are found essential for efficient device performance.

A Study on the Band Structure of ZnO/CdS Heterojunction for CIGS Solar-Cell Application

  • Sim, Hana;Lee, Jeongmin;Cho, Seongjae;Cho, Eou-Sik;Kwon, Sang Jik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권2호
    • /
    • pp.267-275
    • /
    • 2015
  • In this paper, ZnO films were prepared by atomic layer deposition (ALD) and CdS films were deposited using chemical bath deposition (CBD) to form ZnO/CdS heterojunction. More accurate mapping of band arrangement of the ZnO/CdS heterojunction has been performed by analyzing its electrical and optical characteristics in depth by various methods including transmittance, x-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS). The optical bandgap energies ($E_g$) of ZnO and CdS were 3.27 eV and 2.34 eV, respectively. UPS was capable of extracting the ionization potential energies (IPEs) of the materials, which turned out to be 8.69 eV and 7.30 eV, respectively. The electron affinity (EA) values of ZnO and CdS calculated from IPE and $E_g$ were 5.42 eV and 4.96 eV, respectively. Energy-band structures of the heterojunction could be accurately drawn from these parameters taking the conduction band offset (CBO) into account, which will substantially help acquisition of the full band structures of the thin films in the CIGS solar-cell device and contribute to the optimal device designs.

Band alignment and optical properties of $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ gate dielectrics thin films on p-Si (100)

  • Tahir, D.;Kim, K.R.;Son, L.S.;Choi, E.H.;Oh, S.K.;Kang, H.J.;Heo, S.;Chung, J.G.;Lee, J.C.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.381-381
    • /
    • 2010
  • $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ thin films as gate dielectrics have been proposed to overcome the problems of tunneling current and degradation mobility inachieving a thin equivalent oxide thickness. An extremely thin $SiO_2$ layer is used in order to separate the carrier in MOSFET channel from the dielectric field fluctuation caused by phonons in the dielectric which decreases the carrier mobility. The electronic and optical properties influenced the device performance to a great extent. $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ dielectric films on p-Si (100) were grown by atomic layer deposition method, for which the conduction band offsets, valence band offsets and band gapswere obtained by using X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy. The band gap, valence and conduction band offset values for $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ dielectric thin film, grown on Si substrate were about 5.34, 2.35 and 1.87 eV respectively. This band alignment was similar to that of $ZrO_2$. In addition, The dielectric function (k, $\omega$), index of refraction n and the extinction coefficient k for the $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ thin films were obtained from a quantitative analysis of REELS data by comparison to detailed dielectric response model calculations using the QUEELS-$\varepsilon$(k, $\omega$)-REELS software package. These optical properties are similar with $ZrO_2$ dielectric thin films.

  • PDF

MoSe2가 Cu(In,Ga)Se2 박막 태양전지 모듈의 ZnO/Mo 접합의 접촉 저항에 미치는 영향 (Effect of MoSe2 on Contact Resistance of ZnO/Mo Junction in Cu(In,Ga)Se2 Thin Film Solar Module)

  • 조성욱;김아현;이경아;전찬욱
    • Current Photovoltaic Research
    • /
    • 제8권3호
    • /
    • pp.102-106
    • /
    • 2020
  • In this paper, the effect of MoSe2 on the contact resistance (RC) of the transparent conducting oxide (TCO) and Mo junction in the scribed P2 region of the Cu(In,Ga)Se2 (CIGS) solar module was analyzed. The CIGS/Mo junction becomes ohmic-contact by MoSe2, so the formation of the MoSe2 layer is essential. However, the CIGS solar module has a TCO/MoSe2/Mo junction in the P2 region due to structural differences from the cell. The contact resistance (RC) of the P2 region was calculated using the transmission line method, and MoSe2 was confirmed to increase RC of the TCO/Mo junction. B doped ZnO (BZO) was used as TCO, and when BZO/MoSe2 junction was formed, conduction band offset (CBO) of 0.6 eV was generated due to the difference in their electron affinities. It is expected that this CBO acts as a carrier transport barrier that disturbs the flow of current, resulting in increased RC. In order to reduce the RC caused by CBO, MoSe2 must be made thin in a CIGS solar module.

Al이 도핑된 GaInAsSb/GaSb의 경계면에서의 밴드정렬 (Band alignments in Al-doped GaInAsSb/GaSb heterojunctions)

  • 심규리
    • 한국결정성장학회지
    • /
    • 제26권6호
    • /
    • pp.225-231
    • /
    • 2016
  • GaSb 기판위에 Al이 도핑된 GaInAsSb(Al-GaInAsSb)에 대한 최고 가전대 준위(VBM)와 최저 전도대 준위(CBM) 변화를 범용적 밀접결합방법에 근거한 해석적 근사법을 이용하여 계산하였다. GaSb와 Al-GaInAsSb 의 상대적 VBM과 CBM 준위에 따라 경계면에서의 밴드정렬 타입과 가전자대 오프셋(VBO)과 전도대 오프셋(CBO)이 결정된다. 본 논문에서는 Al 도핑이 GaInAsSb의 양이온 자리에 치환된다는 가정하에 이론이 전개 되었으며, Al은 부식등으로 결정의 질을 떨어트릴 수 있는 요인이 되므로 20 %까지 제한하였다. Al 도핑 결과, 전 구간에서 제 II 형의 밴드정렬형태를 갖게 되며, 밴드갭이 증가되는 반면 VBO와 CBO 는 감소됨을 알수 있었다. CBO 에 대한 감소비율 VBO 보다 더 크므로, Al 도핑은 경계면에서의 전자 콘트롤에 더 효율적으로 작용함을 알 수 있었다. Al-GaInAsSb은 전 구간에서 $E({\Gamma})$가 E(L)이나 E(X)보다 낮은 직접 갭을 나타 내고 있지만, Sb 성분이 많아지면(70~80 % 이상) E(L)과 E(X)이 $E({\Gamma})$에 가까워져서 전자 이동도에 영향을 주어 광학적 효율이 다소 떨어질 수 있음을 알 수 있었다.

Energy Band Structure, Electronic and Optical properties of Transparent Conducting Nickel Oxide Thin Films on $SiO_2$/Si substrate

  • Denny, Yus Rama;Lee, Sang-Su;Lee, Kang-Il;Lee, Sun-Young;Kang, Hee-Jae;Heo, Sung;Chung, Jae-Gwan;Lee, Jae-Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.347-347
    • /
    • 2012
  • Nickel Oxide (NiO) is a transition metal oxide of the rock salt structure that has a wide band gap of 3.5 eV. It has a variety of specialized applications due to its excellent chemical stability, optical, electrical and magnetic properties. In this study, we concentrated on the application of NiO thin film for transparent conducting oxide. The energy band structure, electronic and optical properties of Nickel Oxide (NiO) thin films grown on Si by using electron beam evaporation were investigated by X-Ray Photoelectron Spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and UV-Spectrometer. The band gap of NiO thin films determined by REELS spectra was 3.53 eV for the primary energies of 1.5 keV. The valence-band offset (VBO) of NiO thin films investigated by XPS was 3.88 eV and the conduction-band offset (CBO) was 1.59 eV. The UV-spectra analysis showed that the optical transmittance of the NiO thin film was 84% in the visible light region within an error of ${\pm}1%$ and the optical band gap for indirect band gap was 3.53 eV which is well agreement with estimated by REELS. The dielectric function was determined using the REELS spectra in conjunction with the Quantitative Analysis of Electron Energy Loss Spectra (QUEELS)-${\varepsilon}({\kappa},{\omega})$-REELS software. The Energy Loss Function (ELF) appeared at 4.8, 8.2, 22.5, 38.6, and 67.0 eV. The results are in good agreement with the previous study [1]. The transmission coefficient of NiO thin films calculated by QUEELS-REELS was 85% in the visible region, we confirmed that the optical transmittance values obtained with UV-Spectrometer is the same as that of estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS within uncertainty. The inelastic mean free path (IMFP) estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS is consistent with the IMFP values determined by the Tanuma-Powell Penn (TPP2M) formula [2]. Our results showed that the IMFP of NiO thin films was increased with increasing primary energies. The quantitative analysis of REELS provides us with a straightforward way to determine the electronic and optical properties of transparent thin film materials.

  • PDF

1.3um 비냉각형 AlGaInAs BH FP-LD 제작 및 고온특성 (Fabrication and High Temperature Characteristics of 1.3um Uncooled AlGaInAs BH FP Laser Diodes)

  • 김현수;황선령;김준연;강중구;방영철;박성수;이은화;김태진;유준상
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 하계학술발표회
    • /
    • pp.94-95
    • /
    • 2003
  • 최근 들어 저가용 광통신 소자를 제조하기 위한 방법으로 TEC를 사용하지 않는 비냉각형(uncooled) 레이저에 관한 연구가 활발히 진행되고 있다. 이를 위해 반도체 레이저를 형성하는 화합물 반도체 재료 적인 측면에서는 기존에 널리 사용되는 InGaAsP계 물질에 비해 AlGaInAs계 물질구조는 큰 conduction band offset ($\Delta$Ec=$\Delta$O.72Eg) 등으로 인해 고온에서 전자의 overflow를 억제하고 균일한 hole injection으로 인해 우수한 고온특성과 높은 이득(gain)을 보이는 장점을 지니고 있다. (중략)

  • PDF