• Title/Summary/Keyword: Conducted emission

Search Result 1,240, Processing Time 0.025 seconds

Microstructure evolution and effect on deuterium retention in oxide dispersion strengthened tungsten during He+ irradiation

  • Ding, Xiao-Yu;Xu, Qiu;Zhu, Xiao-yong;Luo, Lai-Ma;Huang, Jian-Jun;Yu, Bin;Gao, Xiang;Li, Jian-Gang;Wu, Yu-Cheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2860-2866
    • /
    • 2020
  • Oxide dispersion-strengthened materials W-1wt%Pr2O3 and W-1wt%La2O3 were synthesized by wet chemical method and spark plasma sintering. The field emission scanning electron microscopy (FE-SEM) analysis, XRD and Vickers microhardness measurements were conducted to characterize the samples. The irradiations were carried out with a 5 keV helium ion beam to fluences up to 5.0 × 1021 ions/m2 under 600 ℃ using the low-energy ion irradiation system. Transmission electron microscopy (TEM) study was performed to investigate the microstructural evolution in W-1wt%Pr2O3 and W-1wt%La2O3. At 1.0 × 1020 He+/m2, the average loops size of the W-1wt%Pr2O3 was 4.3 nm, much lower than W-1wt% La2O3 of 8.5 nm. However, helium bubbles were not observed throughout in both doped W materials. The effects of pre-irradiation with 1.0 × 1021 He+/m2 on trapping of injected deuterium in doped W was studied by thermal desorption spectrometry (TDS) technique using quadrupole mass spectrometer. Compared with the samples without He+ pre-irradiation, deuterium (D) retention of doped W materials increased after He+ irradiation, whose retention was unsaturated at the damage level of 1.0 × 1022D2+/m2. The present results implied that irradiation effect of He+ ions must be taken into account to evaluate the deuterium retention in fusion material applications.

Characteristic of Precipitated Metal Carbonate for Carbon Dioxide Conversion Using Various Concentrations of Simulated Seawater Solution (해수 농축수 내 금속 이온 농도에 따른 이산화탄소 전환 생성물의 특성연구)

  • Choi, Eunji;Kang, Dongwoo;Yoo, Yunsung;Park, Jinwon;Huh, Il-sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.539-546
    • /
    • 2019
  • Global warming has mentioned as one of the international problems and these researches have conducted. Carbon Capture, Utilization and Storage (CCUS) technology has improved due to increasing importance of reducing emission of carbon dioxide. Among of various CCUS technologies, mineral carbonation can converted $CO_2$ into high-cost materials with low energy. Existing researches has been used ions extracted solid wastes for mineral carbonation but the procedure is complicated. However, the procedure using seawater is simple because it contained high concentration of metal cation. This research is a basic study using seawater-based wastewater for mineral carbonation. 3 M Monoethanolamine (MEA) was used as $CO_2$ absorbent. Making various concentrations of seawater solution, simulated seawater powder was used. Precipitated metal carbonate salts were produced by mixing seawater solutions and $rich-CO_2$ absorbent solution. They were analyzed by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Thermogravimetric Analysis (TGA) and studied characteristic of producing precipitated metal carbonate and possibility of reusing absorbent.

Projection of Future Heating and Cooling Degree Days over South Korea under the IPCC SRES Scenarios: An Experiment with CCSM3 and MM5 Models (IPCC SRES 시나리오에 따른 우리나라의 미래 냉난방도일 전망: CCSM3와 MM5 모델 활용)

  • Choi, Jin Young;Song, Chang Kun;Kim, Deok Rae;Hong, Sung Chul;Hong, Yoo Deog;Lee, Jae Bum
    • Journal of Climate Change Research
    • /
    • v.4 no.2
    • /
    • pp.141-158
    • /
    • 2013
  • In this study, the projection of future heating and cooling degree days (HDDs and CDDs) has been conducted over South Korea for the period 1996~2005 with 2046~2055 and 2091~2100, using CCSM3 and MM5 simulations driven by the six IPCC SRES emission scenarios (A2, A1B, A1FI, A1T, B1, and B2). Annual mean surface air temperature increases by $1.2{\sim}3.4^{\circ}C$ at the end of the 21st century comparing to the present-day (1996~2005) in South Korea. HDDs decrease by 8~25% and CDDs increase up to 242~1,448% with corresponding changes in temperature. These increases and decreases also change the duration of HDDs and CDDs. HDDs duration decreases by 1 month, while the expansion of CDDs duration is much longer than 2 months. Thus, projected future HDDs and CDDs changes appear that cooling energy demand in summer season would increase and heating energy demand in winter would decrease in the future. Especially, these remarkable changes would be obvious at high mountain area, Gangwon-do and at south area, Jeju island. In the sense of future energy supply and policy, electrical energy for cooling in summer could be getting much more its importance rather than fossil energy used for heating in winter.

Co-firing Characteristics and Slagging Behavior of Sewage Sludge with Coal and Wood Pellet in a Bubbling Fluidized Bed (기포 유동층 반응기를 이용한 하수 슬러지와 석탄 및 우드 펠렛의 혼소 특성 및 슬래깅 성향 연구)

  • Ahn, Hyungjun;Kim, Donghee;Lee, Youngjae
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.323-331
    • /
    • 2018
  • The results of an experimental investigation on the co-firing characteristics and slagging behavior of dried and hydrothermal carbonization sewage sludge, sub-bituminous coal, and wood pellet in a fluidized bed were presented. Combustion tests were conducted in a lab-scale bubbling fluidized bed system at the uniform fuel-air equivalence ratio, air flow rate, and initial bed temperature to measure bed temperature distribution and combustion gas composition. 4 different fuel blending cases were prepared by mixing sewage sludge fuels with coal and wood pellet with the ratio of 50 : 50 by the heating value. $NO_x$ was mostly NO than $NO_2$ and measured in the range of 400 to 600 ppm in all cases. $SO_2$ was considered to be affected mostly by the sulfur content of the sewage sludge fuels. The cases of hydrothermal carbonization sewage sludge mixture showed slightly less $SO_2$ emission but higher fuel-N conversion than the dried sewage sludge mixing cases. The result of fly ash composition analysis implied that the sewage sludge fuels would increase the possibility of slagging/fouling considering the contents of alkali species, such as Na, K, P. Between the two different sewage sludge fuels, dried sewage sludge fuel was expected to have the more severe impact on slagging/fouling behavior than hydrothermal carbonization sewage sludge fuel.

Tracking Propagation Mechanism on the Surface of Polyvinyl-Chloride-Sheathed Flat Cord based on Electric Field Analysis and Gas Discharge Physics (전계해석과 기체방전 이론을 기반으로 한 Polyvinyl-Chloride-Sheathed Flat Cord 표면의 트래킹 진전 메커니즘)

  • Lim, Dong-Young;Park, Herie;Jee, Seung-Wook
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.30-38
    • /
    • 2019
  • Tracking, which is one of the main causes of electrical fires, is perceived as a physical phenomenon of electrical discharge. Hence tracking should be explained based on electric field analysis, conduction path by electron generation, and gas discharge physics. However, few papers have considered these details. This paper proposes a tracking mechanism including their effects on tracking progress. In order to prove this mechanism, a tracking experiment, an electric field analysis for the carbonization evolution model, and an explanation of the tracking process by gas discharge physics were conducted. From the tracking experiment, the current waveforms were measured at each stage of the tracking progress from corona discharge to tracking breakdown. The electric field analysis was carried out in order to determine the electric field on the surface of a dry-band and the high electric field region for electron generation during the generation and progress of carbonization. In this paper, the proposed tracking mechanism consisted of six stages including electron avalanche by corona discharge, accumulation of positive ions, expansion of electron avalanche, secondary electron emission avalanche, streamer, and tracking by conductive path. The pulse current waveforms measured in the tracking experiment can be explained by the proposed tracking mechanism. The results of this study will be used as the technical data to detect tracking phenomenon, which is the cause of electric fire, and to improve the proof tracking index.

Lacquer as Adhesive : Its Historical Value and Modern Utilization (접착제로서의 옻; 역사성과 현대적 활용)

  • Jang, Sung Yoon
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.4
    • /
    • pp.114-125
    • /
    • 2016
  • Lacquer is one of the most widely used natural resin in East Asia since Neolithic Age. As a major ingredient of lacquerware, lacquer is waterproof, insect-proof and rot-proof to be durable and anti-abrasion, generally utilized for mainly painting purpose. According to lacquerware excavated from several sites of Japan and China, lacquerware seems to appear in Neolithic Age. On the other hand in case of excavation research in Korea, lacquerwares are found after the Bronze Age. The initial purpose of lacquer is estimated to be adhesive, regarding the literatures mentioning bitumen(Yeoksceong ), animal glue(Kyeo) and egg alumen(Nanbaek). Especially piece of jar coffin unearthed in Pyeongtaek Daechu-ri site had trace of restoration by lacquer and hemp as an evidence of lacquer for adhesion in Pre-Three Kingdoms period. Since then a trend to restore the broken ceramics with lacquer and decorate with golden foil lasted especially in Joseon Dynasty. In the field of gold plated lacquer method, mother-of-pearl inlaying technique for lacquerware and restoration of buildings, lacquer is still used as adhesive. Due to matter of reversibility lacquer is being avoided for conservation and restoration of cultural heritage. Lacquer as a traditional material for adhesive since ancient times, however, has advantage in adhesion strength and durability. Because synthetic resin adhesive has problem of emission of volatile organic compounds and aging over time, lacquer receives attention recently. On the contrary, by combination adhesive from mixing lacquer and animal glue, already proved the possibility of applicability and chemical modification. A research to utilize lacquer as modern paint or functional material is also conducted continuously also in China and Japan. To put traditional material into practical use and modernize, chemical research from the molecular level of the lacquer is necessary in the near future.

Comparison of Airborne Lead Concentration in and Around Lead Production Plant (재생 납 생산 공장과 인근 지역의 공기 중 납 농도 수준 비교)

  • Park, Changhwan;Park, Yunkyung;Oh, Younhee;Choi, Inja;Cha, Wonseok;Choi, Sangjun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.1
    • /
    • pp.34-41
    • /
    • 2019
  • Objective: This study is conducted to evaluate airborne lead concentration in and around lead production plant. Methods: Airborne lead concentration was monitored simultaneously inside of the processes of lead recycling factory and outside of factory which include stack, boundary of factory and residential area 1 km and 7.5 km from factory, respectively. All samples were measured three times at 1.5 m from the ground and analyzed using inductively coupled plasma mass spectrometer, inductively coupled plasma optical emission spectrometer or flame atomic absorption spectrometer. Results: All airborne lead concentrations measured inside of factory($13.9{\mu}g/m^3-252.9{\mu}g/m^3$) and outside of factory($0.001{\mu}g/m^3-54.97{\mu}g/m^3$) showed log-normal distribution. Geometric mean lead concentration, $54.81{\mu}g/m^3$, measured inside of factory was significantly higher than outside of factory, $0.20{\mu}g/m^3$(p<0.01). Among the samples measured inside the factory, lead concentration was the highest in the refining process($59.02{\mu}g/m^3-252.9{\mu}g/m^3$). In the case of the samples outside the factory, the nearest chimney was the highest($3.84{\mu}g/m^3-54.97{\mu}g/m^3$), and the lead concentration at the farthest place, 7.5 km from the factory was the lowest($0.001{\mu}g/m^3-1.7{\mu}g/m^3$). The arithmetic lead concentration, $0.45{\mu}g/m^3$ in the residential area near the factory was below the atmospheric environment standard of $0.5{\mu}g/m^3$, but the maximum concentration of $3.4{\mu}g/m^3$ was exceeded. Conclusions: Airborne lead concentration in residential area, 1 km away from lead recycling plant, may exceed ambient air standard of $0.5{\mu}g/m^3$.

Agro-Environmental Observation in a Rice Paddy under an Agrivoltaic System: Comparison with the Environment outside the System (영농형 태양광 시설 하부 논에서의 농업환경 관측 및 시설 외부 환경과의 비교)

  • Kang, Minseok;Sohn, Seungwon;Park, Juhan;Kim, Jongho;Choi, Sung-Won;Cho, Sungsik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. It is expected that agrivoltaic systems can realize climate smart agriculture by reducing evapotranspiration and methane emission due to the reduction of incident solar radiation and the consequent surface cooling effect and bring additional income to farms through solar power generation. In this study, to evaluate that agrivoltaic systems are suitable for realization of climate smart agriculture, we conducted agro-environmental observations (i.e., downward/upward shortwave/longwave radiations, air temperature, relative humidity, water temperature, soil temperature, and wind speed) in a rice paddy under an agrivoltaic system and compared with the environment outside the system using automated meteorological observing systems (AMOS). During the observation period, the spatially averaged incoming solar radiation under the agrivoltaic system was about 70% of that in the open paddy field, and clear differences in the soil and water temperatures between the paddy field under the agrivoltaic system and the open paddy field were confirmed, although the air temperatures were similar. It is required in the near future to confirm whether such environmental differences lead to a reduction in water consumption and greenhouse gas emissions by flux measurements.

Uncertainty Analysis of Stem Density and Biomass Expansion Factor for Pinus rigida in Korea (리기다소나무림의 줄기밀도와 바이오매스 확장계수에 대한 불확실성 평가)

  • Seo, Yeon Ok;Lee, Young Jin;Pyo, Jung Kee;Kim, Rae Hyun;Son, Yeong Mo;Lee, Kyeong Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.149-153
    • /
    • 2011
  • This study was conducted to examine the uncertainty analysis of the stem density and biomass expansion factor for Pinus rigida in Korea. A total of 57 representative sample trees were harvested. The age class in Pinus rigida forests was divided into two, which were stands with less than 20 years and more than 21 years. The influence of stand ages on biomass expansion factor showed that it was statistically significant (p=0.0001), but it was not significant on stem density (p=0.8070). The results of this study based on the uncertainty evaluation method which were suggested by IPCC guide line indicated that stem density of the stand with less than 20 years were 30.92%, while were 25.12% the stands with more than 21years. The uncertainty in biomass expansion factor of less than 20 years and more than 21 years were 60.32% and 22.42%, respectively. The uncertainty of less than 20 years was higher compared to those stands with more than 21 years. In the case of old stand, it showed the lowest uncertainty results but younger stands showed the highest uncertainty results. This study could be applied to our country's emission factor by using stem density and biomass expansion factors which were less than 20 years and more than 21 years for Pinus rigida in Korea.

Study on the Improvement of Electrochemical Performance by Controlling the Surface Characteristics of the Oxygen Electrode Porous Transport Layer for Proton Exchange Membrane Water Electrolysis (양이온 교환막 수전해용 산화전극 확산층의 표면 특성 제어를 통한 전기화학적 성능 개선 연구)

  • Lee, Han Eol;Linh, Doan Tuan;Lee, Woo-kum;Kim, Taekeun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.332-339
    • /
    • 2021
  • Recently, due to concerns about the depletion of fossil fuels and the emission of greenhouse gases, the importance of hydrogen energy technology, which is a clean energy source that does not emit greenhouse gases, is being emphasized. Water electrolysis technology is a green hydrogen technology that obtains hydrogen by electrolyzing water and is attracting attention as one of the ultimate clean future energy resources. In this study, the surface properties of the porous transport layer (PTL), one of the cell components of the proton exchange membrane water electrolysis (PEMWE), were controlled using a sandpaper to reduce overvoltage and increase performance and stability. The surfaces of PTL were sanded using sandpapers of 400, 180, and 100 grit, and then all samples were finally treated with the sandpaper of 1000 grit. The prepared PTL was analyzed for the degree of hydrophilicity by measuring the water contact angle, and the surface shape was observed through SEM analysis. In order to analyze the electrochemical characteristics, I-V performance curves and impedance measurements were conducted.