• Title/Summary/Keyword: Conductance Sensor

검색결과 58건 처리시간 0.024초

AN IMPROVED ELECTRICAL-CONDUCTANCE SENSOR FOR VOID-FRACTION MEASUREMENT IN A HORIZONTAL PIPE

  • KO, MIN SEOK;LEE, BO AN;WON, WOO YOUN;LEE, YEON GUN;JERNG, DONG WOOK;KIM, SIN
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.804-813
    • /
    • 2015
  • The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor.

고정밀 2상유동 액막두께 측정을 위한 연성회로기판 기반 3-전극 센서 개발 (Development of Three-ring Conductance Sensor based on Flexible Printed Circuit Board for Measuring Liquid Film thickness in Two-phase Flow with High Resolution)

  • 이규병;김종록;어동진;박군철;조형규
    • 센서학회지
    • /
    • 제25권1호
    • /
    • pp.57-64
    • /
    • 2016
  • To understand a two-phase flow, a liquid film thickness is one of the important factors. A lot of researches have been performed to measure liquid film thickness with various approaches. Recently, an electrical conductance method which uses the conductivity of the liquid film has been widely applied on measuring the liquid film thickness. Though the electrical method has an advantage in high spatial resolution, as the conductivity of liquid can be affected by its temperature variation, the conventional electrical conductance methods have a limitation in being applied on varying temperature conditions where a heat transfer is involved. The purpose of this study is to develop a three-ring liquid film sensor that overcomes the limitation of the conventional method. The three-ring conductance method can measure the film thickness regardless of temperature variation by compensating the change of liquid conductivity. Considering its application on a wide range of conditions such as high temperature or curved surfaces, the sensor was fabricated on flexible printed circuit board (FPCB) in this study. This paper presents the concept of the measurement method, design procedure, prototype sensor fabrication and calibration results.

MWNT를 스프레이 코팅한 가스센서의 알콜 가스 응답 특성 (Response properties of alcohol gas sensors depositing MWNT-composites by spray method)

  • 최영민;감병민;이호중;김성진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.382-383
    • /
    • 2008
  • In this paper we presented experimental results of a gas sensor utilizing multi-walled carbon nanotube (MWNT)composites for the alcohol detection which is useful to checking drinking and driving, for example. The MWNT-composites were deposited using spray method on PES substrates suitable for use in low-cost and flexible sensors. We observed the variation of conductance from the sensors exposed to alcohol vapors evaporated at 37C equal to the human body temperature to match real condition. As the result, the conductance was decreased with the increase of ethanol vol% diluted in water. The sensors showed good sensitivity and linearity.

  • PDF

배플이 없는 사각형 음향센서의 자기방사 임피던스 (Self-Radiation Impedance of rectangular Acoustic Sensor Without Baffle)

  • 이종길;서인창
    • 한국음향학회지
    • /
    • 제14권4호
    • /
    • pp.82-88
    • /
    • 1995
  • 배플이 없는 폴리우레탄 유한 윈도우를 장착한 사각형 음향 센서의 수중 음향방사로 인한 자기방사 임피던스 (self-radiation impedance)의 컨덕턴스(conductance)와 서셉턴스(susceptance)를 실험으로 계측 하여 이를 전기적 등가회로를 이용하여 수중방사 임피던스 양을 계산하였다. 또한 무한배플(rigid infinite baffle)의 사각형 피스톤을 모델로 선정한 Levine식을 이용하여 음향방사로 인한 자기방사 임피던스를 적분식으로 표시하고 이것을 방사 저항과 방사 리액턴스로 분리하여 수치해석하였다. 실험의 경계조건과 비유적 유사한 이론해석 결과를 실험치와 비교하였다.

  • PDF

저온검출기의 열전도 연구 (Heat Flow Studies in Low Temperature Detectors)

  • 김일환;이민규;김용함
    • Progress in Superconductivity
    • /
    • 제12권1호
    • /
    • pp.41-45
    • /
    • 2010
  • Low temperature micro-calorimeters have been employed in the field of high resolution alpha spectrometers. These alpha detectors typically consist of a superconducting or metal absorber and a temperature sensor. The temperature sensor can be a transition edge sensor (TES), a metallic magnetic calorimeter (MMC) or other low temperature detectors for an accurate measurement of temperature change due to an alpha particle absorption. We report a recent study of the heat flow between a replaceable absorber and a temperature sensor. A piece of gold foil in $2.4{\times}2.7{\times}0.03\;mm^3$ is used as an absorber. A $40\;{\mu}m$ diameter Au:Er paramagnetic sensor is attached to another small piece of gold foil in $400{\times}200{\times}30\;{\mu}m^3$ to serve as the temperature sensor. This sensor assembly, Au:Er and gold foil, is placed on a miniature SQUID susceptometer in a gradiometric configuration. The thermal connection between the absorber and the sensor was made with three gold bonding wires. The measured thermal conductance shows a linear dependence to the temperature. The values are in a good agreement with Wiedemann-Franz type thermal conductance of the gold wires.

단겹 탄소나노튜브 트랜지스터의 나노습도센서 응용가능성 연구 (Possible application of single-walled carbon nanotube transistors for humidity sensor)

  • 나필선;김효진;이영화;이정오;김진희
    • 센서학회지
    • /
    • 제14권5호
    • /
    • pp.331-336
    • /
    • 2005
  • The influence of water molecule on the electrical properties of single-walled carbon nanotube field effect transistors (SWNT-FETs) was reported. Conductance suppression was observed with the increase of the humidity. This can be explained by doping of the SWNT-FETs, which has p-type semiconductor characteristic, with the water molecules acting as an electron donor. However, after 65 % of humidity, conductance of the SWNT-FETs started to increase again, due to the opening of electron channels. Upon annealing at $400^{\circ}C$ in Ar atmosphere, conductance increases more than 500 %, and the threshold voltage shifts toward further positive gate voltages. The results of this experiment support possible application of single-walled carbon nanotubes for humidity sensing material.

이미지 센서 적용을 위한 In0.7Ga0.3As QW HEMT 소자의 extrinsic trans-conductance에 영향을 미치는 성분들의 포괄적 연구 (Comprehensive study of components affecting extrinsic transconductance in In0.7Ga0.3As quantum-well high-electron-mobility transistors for image sensor applications)

  • 윤승원;김대현
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.441-445
    • /
    • 2021
  • The components affecting the extrinsic transconductance (gm_ext) in In0.7Ga0.3As quantum-well (QW) high-electron-mobility transistors (HEMTs) on an InP substrate were investigated. First, comprehensive modeling, which only requires physical parameters, was used to explain both the intrinsic transconductance (gm_int) and the gm_ext of the devices. Two types of In0.7Ga0.3As QW HEMT were fabricated with gate lengths ranging from 10 ㎛ to sub-100 nm. These measured results were correlated with the modeling to describe the device behavior using analytical expressions. To study the effects of the components affecting gm_int, the proposed approach was extended to projection by changing the values of physical parameters, such as series resistances (RS and RD), apparent mobility (𝜇n_app), and saturation velocity (𝜈sat).

전기-역학적 임피던스를 이용한 모래의 단위중량 및 강도 평가 (Evaluation of Unit Weight and Strength of Sand Using Electro-mechanical Impedance)

  • 박성식;우승욱;이정신;이새벽;이준철
    • 한국지반공학회논문집
    • /
    • 제34권2호
    • /
    • pp.33-42
    • /
    • 2018
  • 본 연구에서는 소형 압전소자의 전기-역학적 임피던스를 이용하여 모래의 단위중량이나 강도를 평가하였다. 다짐 몰드 내 크기가 다른 세 종류의 미고결 낙동강모래를 느슨하거나 조밀하게 성형한 다음 내부에 직경 20mm 원형모양의 납작한 압전소자를 설치하고 임피던스를 측정하였다. 또한, 가는 낙동강모래에 시멘트비 4, 8, 12, 16%로 직경 50mm, 높이 100mm의 고결 공시체를 6층으로 다져서 제작하였다. 고결 공시체의 3층 내부에 압전소자를 수평방향으로 설치한 다음 3일 동안 임피던스 신호를 측정하였으며, 측정 후 일축압축시험을 실시하였다. 미고결 모래의 단위중량이 증가함에 따라 공진주파수는 102kHz에서 105kHz까지 약간 증가하였으며, 공진주파수 발생 시 컨덕턴스는 감소하였다. 고결 모래의 양생시간과 시멘트비가 증가함에 따라 공진주파수는 129kHz에서 266kHz까지 크게 증가하였으며, 공진주파수 발생 시 컨덕턴스는 반대로 감소하는 경향을 보였다. 고결 모래의 일축압축강도는 시멘트비에 따라 289-1,390kPa 정도이며, 공진주파수와는 뚜렷한 정비례 관계를 보이지만 공진주파수 발생 시 컨덕턴스와는 반비례 관계를 보였다.

Gas sensor based on hydrogenated multilayer graphene

  • 박성진;박민지;유경화
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.273.1-273.1
    • /
    • 2016
  • Graphene exhibits a number of unique properties that make it an intriguing candidate for use in sensor. Here, we report graphene-based gas sensor. Graphene was grown using CVD. Then, the sensor was made using standard lithography techniques. The sensor conductance increased upon exposure to NH3, whereas it decreased upon NO2, suggesting that NH3 and NO2 might be discriminated using the graphene-based sensor. To improve the sensitivity, graphene was treated with hydrogen plasma. After hydrogen treatment, the electrical properties of graphene changed from ambipolar to p-type semiconductors. In addition, the sensor performance was improved probably due to an opening of bandgap.

  • PDF

가스절연기기의 부분방전검출을 위한 SWNT-UHF 융합센서 (SWNT-UHF Fusion Sensor for GIS Partial Discharge Detection)

  • 이상욱;장용무;백승현;이종철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.120-120
    • /
    • 2010
  • To detect the PD events, we have studied a fusion sensor, the UHF sensor and the single-walled carbon nanotube(SWNT) gas sensor. We are accustomed to the UHF sensor which have employed to detect the partial discharges in apparatus GIS-like. But the SWNT gas sense is a newly way proposed to detect the partial discharges. In this study, we monitored not only the changes of the electrical conductance of the SWNT sensors in responding to the PD events but also the signal of the UHF sensor at the same time with IEC 60270 standard method for reference on the partial discharge events.

  • PDF