• Title/Summary/Keyword: Conditions for Recovery

Search Result 1,302, Processing Time 0.049 seconds

Effects of Reaction Conditions on the Performance of Catalytic Pyrolysis of LDPE in a Semi-Batch Reactor (LDPE 반회분식 촉매열분해에서 조업조건이 반응 특성에 미치는 영향)

  • Na, Jeong-Geol;Leem, Chel-Hyen;Choi, Hwi-Kyoung;Chung, Soo-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.79-82
    • /
    • 2006
  • Fueled by ballooning oil prices, waste plastics are now regarded as being cheap and abundant renewable sources, removing their stigma of dirty wastes Catalytic pryolysis of plastics in liquid phase allows recovery of light fuel oil as well as green treatment of polymerics wastes, and therefore significant efforts have been devoted to this research field. In this study, catalytic Pyrolysis of LDPE was carl ied out in semi-batch reactor which equipped a unit of separation and recirculation. The effect of react ion conditions were examined by analyzing liquid oil yield and carbon number distribution of products

  • PDF

Feasibility Study of Climatological Variability Monitoring Using OSMI and EOS Data

  • Lim, Hyo-Suk;Kim, Jeong-Yeon
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.317-322
    • /
    • 2002
  • Dramatic changes in the patterns of satellite-derived pigment concentrations, sea-level height anomaly, sea surface temperature anomaly, and zonal wind anomaly are observed during the 1997-1998 El Nino. By some measures, the 1997-1998 El Nino was the strongest of the 20$^{th}$ century. A very strong El Nino developed during 1997 and matured late in the year. A dramatic recovery occurred in mid-1998 and led to a La Nina conditions. The largest spatial extent of the phytoplankton bloom was followed recovery from El Nino over the equatorial Pacific. The evolution towards a warm episode (El Nino) continued in the equatorial Pacific from March 2002 and further development toward mature El Nino conditions may be possible in late 2002. The OSMI (Ocean Scanning Multispectral Imager) data can be used for detection of dramatic changes in the patterns of pigment concentration during next El Nino.

  • PDF

A Study on the Recovery of Mn Component from the Spent Manganese Batteries with Ammonium Sulfate (廢 망간電池로부터 黃酸 암모늄에 의한 Mn 성분의 분리 회수에 관한 연구)

  • 박용성;우제원;황영애
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.3-8
    • /
    • 2000
  • A reaction between the depolarizing mixture in the spent manganese batteries and ($NH_4$)$_2$$SO_4$was carried out to find a new process for the extraction of Mn component from the spent manganese batteries. The optimum conditions were as follows : the reaction temperature $425^{\circ}C$, ($NH_4$)$_2$$SO_4$weight ratio to the depolarizing mixture in the spent manganese batteries 12.0, reaction time 60 min. Under above conditions manganese was extracted 93.5%.

  • PDF

A Study on the Optimal Operating Conditions for an Unreacted Hydrogen Oxidation-Heat Recovery System for the Safety of the Hydrogen Utilization Process (수소 활용공정 안전성 확보를 위한 미반응 수소 산화-열 회수 시스템의 운전 조건 최적화 연구)

  • Younghee Jang;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.307-312
    • /
    • 2023
  • In this study, a catalytic oxidation-heat recovery system was designed that can remove unreacted with a concentration of about 1% to 6% in the exhaust gas of hydrogen fuel cells and recover heat to ensure safety in the hydrogen economy. The safety system was devised by filling hydrogen oxidation catalysts at room temperature that can remove unreacted hydrogen without any energy source, and an exhaust-heat recovery device was integrated to efficiently recover the heat released from the oxidation reaction. Through CFD analysis, variations in pressure and fluid within the system were shown depending on the filling conditions of the hydrogen oxidation system. In addition, it was found that waste heat could be recovered by optimizing the temperature of the exhaust gas, flow rate, and pressure conditions within the heat recovery system and securing hot water above 40 ℃ by utilizing the exhaust gas oxidation heat source above 300 ℃. Through this study, it was possible to confirm the potential of utilizing hydrogen processes, which are applied in small to medium-sized systems such as hydrogen fuel cells, as a safety system by evaluating them at a pilot scale. Additionally, it could be a safety guideline for responding to unexpected hydrogen safety accidents through further pilot-scale studies.

A Study on the Optimal Phosphorus Recovery Conditions from Sewage Sludge Ash by pH Control and Reuse of Extracts (하수슬러지 소각재 추출액의 pH 조절 및 재사용에 따른 최적의 인(P) 회수 조건 산정 연구)

  • Liu, Qi;Lim, Sung Hyun;Yoon, Seok-Pyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.3
    • /
    • pp.15-26
    • /
    • 2020
  • To recover phosphorus from incinerated sewage sludge ash(ISSA), ISSA were extracted with sulfuric acid solution, and the optimal phosphorus recovery conditions were experimented by comparing the recovered phosphorus contents and heavy metals by raising pH. Also the phosphorus recovery efficiency was compared when acid extract was reused or classified by particle size of ISSA. The optimal conditions for recovering phosphorus from ISSA were 1N sulfuric acid solution with an L/S ratio of 10, and an extraction time of 30 minutes. Considering the addition of alkali substances and the content of heavy metals in the recovered sediment, it is concluded to recover phosphorus under pH 5. Reuse of the ISSA extract increased the recovery rate of phosphorus by 14~21% depending on the reuse rate (100 and 50%), but it also increased zinc contents to 33 and 21%, and copper contents to 35 and 20%, respectively. The experiment of ISSA divided into four sections by particle size showed that there was no distinct advantage of phosphorous recovery by classification of certain particle size of ISSA. The removal of heavy metals from extracts through EDTA and cation exchange resin showed no definite effect.

Design of Rankine Steam Cycle and Performance Evaluation of HT Boiler for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 랭킨 스팀 사이클 설계 및 HT Boiler의 성능 평가)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Lee, Dong-Hyuk;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.21-29
    • /
    • 2012
  • A dual loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop (HT loop) only recovers the heat of the exhaust gas. A low temperature loop (LT loop) recovers the residual heat from the HT loop, the coolant heat and the remaining exhaust gas heat. The two separate loops are coupled with a heat exchanger. This paper has dealt with a layout of the dual loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the HT boiler, a core part of a HT loop, have been presented. The prototype of the HT boiler was evaluated by experiment. For the performance evaluation of the HT boiler, inlet temperature of the HT boiler working fluid was set equal to the temperature degree of sub-cool of $5^{\circ}C$ at the condensing pressure. The exit condition was the degree of super-heat set at $5^{\circ}C$. The characteristics of the HT boiler such as heat recovery and pressure drops of fluids were evaluated with varying flow rates and inlet temperatures of exhaust gas under various evaporating pressure conditions.

Dilute Acid Pretreatment of Woody Hemicellulose Using a Percolation Process (Percolation 공정에 의한 목질계 헤미셀룰로오스의 묽은산 전처리)

  • 염동문;김성배;박순철
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.312-319
    • /
    • 1998
  • The dilute-acid pretreatment/hydrolysis of hemicellulose in oak wood using a percolation reactor was investigated. The experimental conditions ranged 160∼180$^{\circ}C$ and 0.05∼0.2 wt.% sulfuric acid. XMG(xylan+mannan+galactan) recovery was higher when sulfuric acid was used as leaching solvent than water. Also it was important for high XMG recovery to keep leaching temperature higher after reaction. XMG recovery was decreased as the size of wood chips was increased. At an optimum condition (reaction condition= 170$^{\circ}C$, 0.1% sulfuric acid, 1ml/min, 10min, leaching condition=0.1% sulfuric acid, 2mL/min, 20 min), the product yield and the sugar concentration were about 92% and 2.7%, respectively.

  • PDF

An Experimental Study on Thermoelectric Generator Performance for Waste Coolant Recovery Systems in Vehicles (자동차 냉각수 폐열회수 열전발전 시스템의 성능에 관한 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.329-334
    • /
    • 2014
  • This study indicated the possibility of energy regeneration from waste coolant heat, by using thermoelectric generation integrated with heat pipe. The internal combustion engine rejects more than 60% wasteful energy to the atmosphere by heat. The thermoelectric generator has recently been studied, to convert the energy from engine waste heat into electricity. For coolant waste heat recovery, a thermoelectric generator was investigated, to find out the possibility of vehicular application. Performance characteristics were conducted with various test conditions of coolant temperature, coolant mass flow rate, air temperature, and air velocity, with the thermoelectric generator installed either horizontally or vertically. Experimental results show that the electric power and conversion efficiency increases according to the temperature difference between the hot and cold side of the thermoelectric generator, and the coolant flow rate of the hot side heat exchanger. Performance improvement can be expected by optimizing the heat pipe design.

Hydrogen Purification by the Four-Bed Pressure Swing Adsorption Process from Steam Methane Reforming Off-Gas (4탑 PSA 공정의 의한 SMR off-gas로부터 수소 정제)

  • Yang, Se-Il;Park, Ju-Yong;Jang, Seong-Cheol;Kim, Sung-Hyun;Choi, Dae-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.383-386
    • /
    • 2008
  • The four-bed PSA process using a layered bed of activated carbon and zeolite 5A was studied to produce a high purity hydrogen product from SMR off-gas. At a desired product purity (99.999%+), the recovery increased with decreasing the linear velocity. However, the difference of the increasing of the recovery became smaller with the decreasing of the linear velocity and then was similar from below the linear velocity 3.9 cm/s. When the adsorbents, the feed gas composition, and the operating conditions are given, the residence time is mainly a function for design of the PSA bed size. The minimum residence time exists to obtain the maximum recovery at desired product purity.

  • PDF

Effect of Invertase on the Batch Foam Fvactionation of Bromelain

  • D. Micheal Ackermann;Jr., Matthew L. Stedman;Samuel Ko;Ales Prokop;Park, Don-Hee;Robert D. Tanner
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.167-172
    • /
    • 2003
  • Foam fractionation can be used to enrich a hydrophobic protein such as bromelain from an aerated dilute protein solution because the protein foams. On the other hand, a protein such as invertase, which is hydrophilic, is not likely to foam under similar aerated conditions. While a foam fractionation process may not be appropriate for recovering a hydrophilic protein alone, it is of interest to see how that non-foaming protein affects the foaming protein when the two are together in a mixture. The bromelain enrichment, activity and mass recovery were observed as a function of the solution pH in order to explore how invertase can affect the recovery of bromelain in a foam fractionation process.