• 제목/요약/키워드: Conditioned place preference (CPP)

검색결과 18건 처리시간 0.02초

Effects of Coptis japonica on Morphine-Induced Conditioned Place Preference in Mice

  • Lee, Seok-Yong;Song, Dong-Keun;Jang, Choon-Gon
    • Archives of Pharmacal Research
    • /
    • 제26권7호
    • /
    • pp.540-544
    • /
    • 2003
  • Morphine, an analgesic with significant abuse potential, is considered addictive because of drug craving and psychological dependence. It is reported that repeated treatment of morphine can produce conditioned place preference (CPP) showing a reinforcing effect in mice. CPP is a useful method for the screening of morphine-induced psychological dependence. In the present study, we investigated the effect of the methanolic extract of Coptis japonica (MCJ) on morphine-induced CPP in mice. Furthermore, we examined c-fos expression in the parietal cortex, piriform cortex, striatum, nucleus accumbens, and hippocampus of the morphine-induced CPP mouse brain. Treatment of MCJ 100 mg/kg inhibited morphine-induced CPP. Expression of c-fos was increased in the cortex, striatum, nucleus accumbens, and hippocampus of the morphine-induced CPP mouse brain. These increases of expression were inhibited by treatment with MCJ 100 mg/kg, compared to the morphine control group. Taken together, these results suggest that MCJ inhibits morphine-induced CPP through the regulation of c-fos expression in the mouse brain.

Inhibitory Effects of (-)-Epigallocatechin gallate on Morphine-Induced Locomotor Sensitization and Conditioned Place Preference in Mice

  • Eun, Jae-Soon;Kwon, Han-Na;Hong, Jin-Tae;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • 제14권3호
    • /
    • pp.125-131
    • /
    • 2006
  • The inhibitory effects of (-)-epigallocatechin gallate (EGCG), a major compound of green tea, on the development of locomotor sensitization, conditioned place preference (CPP) and dopamine receptor supersensitivity induced by the repeated administration of morphine were investigated in mice. A single administration of morphine produces hyperlocomotion. The repeated administration of morphine develops sensitization, a progressive enhancement of locomotion, which is used as a model for studying the craving and drug-seeking behaviors characterizing addiction, and CPP, which is used as a model for studying drug reinforcement, respectively. EGCG inhibited morphine-induced hyperlocomotion, sensitization and CPP. In addition, EGCG inhibited the development of postsynaptic dopamine receptors supersensitivity, which may be an underlying common mechanism that mediates the morphine-induced dopaminergic behaviors such as sensitization and CPP. Apomorphine (a dopamine agonist)-induced climbing behaviors also were inhibited by a single direct administration of EGCG These results provide evidence that EGCG has anti-dopaminergic activity, as inhibiting the development of dopamine receptor supersensitivity and apomorphine-induced climbing behaviors. Therefore, it is suggested that green tea may be useful for the prevention and therapy of these adverse actions of morphine.

Inhibitory Effects of Paeonol on Morphine-Induced Locomotor Sensitization and Conditioned Place Preference in Mice

  • Eun, Jae-Soon;Bae, Ki-Hwan;Yun, Yeo-Pyo;Hong, Jin-Tae;Kwon, Han-Na;Oh, Ki-Wan
    • Archives of Pharmacal Research
    • /
    • 제29권10호
    • /
    • pp.904-910
    • /
    • 2006
  • The inhibitory effects of paeonol, a major compound of Paeoniae radix, on the development of locomotor sensitization, conditioned place preference (CPP) and dopamine receptor supersensitivity induced by the repeated administration of morphine were investigated through behavioral experiments. A single administration of morphine produces hyperlocomotion. Repeated administration of morphine develops sensitization (reverse tolerance), a progressive enhancement of locomotion, which is used as a model for studying the drug-induced drug-seeking behaviors, and CPP, which is used as a model for studying drug reinforcement. Paeonol inhibited morphine-induced hyperlocomotion, sensitization and CPP. In addition, paeonol inhibited the development of postsynaptic dopamine receptors supersensitivity, which may be an underlying common mechanism that mediates the morphine-induced dopaminergic behaviors such as sensitization and CPP. Apomorphine (a dopamine agonist)-induced climbing behaviors also were inhibited by a single direct administration of paeonol. These results provide evidence that paeonol exerts anti-dopaminergic activity, and it is suggested that paeonol may be useful for the prevention and therapy of these adverse actions of morphine.

Inhibition by MK-801 of Morphine-Induced Conditioned Place Preference and Postsynaptic Dopamine Receptor Supersensitivity in Mice

  • Kim, Hack-Seang;Park, Woo-Kyu;Jang, Choon-Gon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.214-214
    • /
    • 1996
  • Intraperitoneal injection of morphine (5 mg/kg) in mice every other day for 8 days produced conditioned place preference (CPP). CPP effects were evaluated by assessing the difference in time spent in the drug-paired compartment and the saline-paired compartment of the place conditioning apparatus. The injection of a non-competitive NMDA antagonist, MK-801 (0.05 and 0.1 mg/kg, i.p.), prior to and during morphine treatment in mice Inhibited morphine-induced CPP. The development of postsynaptic dopamine (DA) receptor supersensitivity in mice displaying a morphine-induced CPP was evidenced by the enhanced response in ambulatory activity to the DA agonist, apomorphine (2 mg/kg). MK-801 inhibited that development of postsynaptic DA receptor supersensitivity MK-801 also inhibited apomorphine-induced climbing behavior, suggesting that MK-801 Inhibits dopaminergic activation mediated via the NMDA receptor.

  • PDF

Conditioned Place Preference and Self-Administration Induced by Nicotine in Adolescent and Adult Rats

  • Ahsan, Hafiz Muhammad;de la Pena, June Bryan I.;Botanas, Chrislean Jun;Kim, Hee Jin;Yu, Gu Yong;Cheong, Jae Hoon
    • Biomolecules & Therapeutics
    • /
    • 제22권5호
    • /
    • pp.460-466
    • /
    • 2014
  • Nicotine addiction is a worldwide problem. However, previous studies characterizing the rewarding and reinforcing effects of nicotine in animal models have reported inconsistent findings. It was observed that the addictive effects are variable on different factors (e.g. route, dose, and age). Here, we evaluated the rewarding and reinforcing effects of nicotine in different routes of administration, across a wide dose range, and in different age groups. Two of the most widely used animal models of drug addiction were employed: the conditioned place preference (CPP) and self-administration (SA) tests. Nicotine CPP was evaluated in different routes [intraperitoneal (i.p.) and subcutaneous (s.c.)], doses (0.05 to 1.0 mg/kg) and age [adolescent and adult rats]. Similarly, intravenous nicotine SA was assessed in different doses (0.01 to 0.06 mg/kg/infusion) and age (adolescent and adult rats). In the CPP test, s.c. nicotine produced greater response than i.p. The 0.2 mg/kg dose produced highest CPP response in adolescent, while 0.6 mg/kg in adult rats; which were also confirmed in 7 days pretreated rats. In the SA test, adolescent rats readily self-administer 0.03 mg/kg/infusion of nicotine. Doses that produced nicotine CPP and SA induced blood nicotine levels that corresponded well with human smokers. In conclusion, we have demonstrated that nicotine produces reliable CPP [0.2 mg/kg dose (s.c.)] in adolescents and [0.6 mg/kg dose (s.c.)] in adults, and SA [0.03 mg/kg/infusion] in adolescent rats. Both tests indicate that adolescent rats are more sensitive to the rewarding and reinforcing effects of nicotine.

Inhibition of anterior cingulate cortex excitatory neuronal activity induces conditioned place preference in a mouse model of chronic inflammatory pain

  • Kang, Sukjae Joshua;Kim, Siyong;Lee, Jaehyun;Kwak, Chuljung;Lee, Kyungmin;Zhuo, Min;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.487-493
    • /
    • 2017
  • The anterior cingulate cortex (ACC) is known for its role in perception of nociceptive signals and the associated emotional responses. Recent optogenetic studies, involving modulation of neuronal activity in the ACC, show that the ACC can modulate mechanical hyperalgesia. In the present study, we used optogenetic techniques to selectively modulate excitatory pyramidal neurons and inhibitory interneurons in the ACC in a model of chronic inflammatory pain to assess their motivational effect in the conditioned place preference (CPP) test. Selective inhibition of pyramidal neurons induced preference during the CPP test, while activation of parvalbumin (PV)-specific neurons did not. Moreover, chemogenetic inhibition of the excitatory pyramidal neurons alleviated mechanical hyperalgesia, consistent with our previous result. Our results provide evidence for the analgesic effect of inhibition of ACC excitatory pyramidal neurons and a prospective treatment for chronic pain.

Involvement of pCREB Expression in Inhibitory Effects of Coptis japonica on Morphine-induced Psychological Dependence

  • Kwon, Seung-Hwan;Ha, Ri-Ra;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • 제16권2호
    • /
    • pp.113-117
    • /
    • 2008
  • Morphine is a potent analgesic with significant abuse potential, because of drug craving and psychological dependence. It is reported that repeated treatment of morphine can produce conditioned place preference (CPP) showing a reinforcing effect in mice. Previously, we have reported the inhibitory effect of the methanolic extract of Coptis japonica (MCJ) on morphine-induced CPP in mice. The present study was employed whether p-CREB expression is involved in the inhibitory effect of MCJ on the morphine-induced CPP in the mouse hippocampus. Repeated administration of MCJ 100 mg/kg inhibited morphine-induced CPP. Expression of p-CREB was increased in the dentate gyrus of the hippocampus that had undergone morphineinduced CPP. This increase of expression was significantly inhibited by administration of MCJ 100 mg/kg, compared to the morphine control group. Taken together, these results suggest that MCJ inhibits morphine-induced CPP through the regulation of p-CREB expression in the mouse dentate gyrus of the hippocampus.

α-Pinene Attenuates Methamphetamine-Induced Conditioned Place Preference in C57BL/6 Mice

  • Chan Lee;Jung-Hee Jang;Gyu Hwan Park
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.411-416
    • /
    • 2023
  • Methamphetamine (METH) is a powerful neurotoxic psychostimulant affecting dopamine transporter (DAT) activity and leading to continuous excess extracellular dopamine levels. Despite recent advances in the knowledge on neurobiological mechanisms underlying METH abuse, there are few effective pharmacotherapies to prevent METH abuse leading to brain damage and neuropsychiatric deficits. α-Pinene (APN) is one of the major monoterpenes derived from pine essential oils and has diverse biological properties including anti-nociceptive, anti-anxiolytic, antioxidant, and anti-inflammatory actions. In the present study, we investigated the therapeutic potential of APN in a METH abuse mice model. METH (1 mg/kg/day, i.p.) was injected into C57BL/6 mice for four alternative days, and a conditioned place preference (CPP) test was performed. The METH-administered group exhibited increased sensitivity to place preference and significantly decreased levels of dopamine-related markers such as dopamine 2 receptor (D2R) and tyrosine hydroxylase in the striatum of the mice. Moreover, METH caused apoptotic cell death by induction of inflammation and oxidative stress. Conversely, APN treatment (3 and 10 mg/kg, i.p.) significantly reduced METH-mediated place preference and restored the levels of D2R and tyrosine hydroxylase in the striatum. APN increased the anti-apoptotic Bcl-2 to pro-apoptotic Bax ratio and decreased the expression of inflammatory protein Iba-1. METH-induced lipid peroxidation was effectively mitigated by APN by up-regulation of antioxidant enzymes such as manganese-superoxide dismutase and glutamylcysteine synthase via activation of nuclear factor-erythroid 2-related factor 2. These results suggest that APN may have protective potential and be considered as a promising therapeutic agent for METH-induced drug addiction and neuronal damage.

Different development patterns of reward behaviors induced by ketamine and JWH-018 in striatal GAD67 knockdown mice

  • Sun Mi Gu;Eunchong Hong;Sowoon Seo;Sanghyeon Kim;Seong Shoon Yoon;Hye Jin Cha;Jaesuk Yun
    • Journal of Veterinary Science
    • /
    • 제25권5호
    • /
    • pp.63.1-63.12
    • /
    • 2024
  • Importance: Glutamic acid decarboxylase 67 (GAD67) is a gamma-aminobutyric acid (GABA) synthesis enzyme associated with the function of other neurotransmitter receptors, such as the N-methyl-D-aspartate (NMDA) receptor and cannabinoid receptor 1. However, the role of GAD67 in the development of different abused drug-induced reward behaviors remains unknown. In order to elucidate the mechanisms of substance use disorder, it is crucial to study changes in biomarkers within the brain's reward circuit induced by drug use. Objective: The study was designed to examine the effects of the downregulation of GAD67 expression in the dorsal striatum on reward behavior development. Methods: We evaluated the effects of GAD67 knockdown on depression-like behavior and anxiety using the forced swim test and elevated plus maze test in a mouse model. We further determined the effects of GAD67 knockdown on ketamine- and JWH-018-induced conditioned place preference (CPP). Results: Knockdown of GAD67 in the dorsal striatum of mice increased depression-like behavior, but it decreased anxiety. Moreover, the CPP score on the NMDA receptor antagonist ketamine was increased by GAD67 knockdown, whereas the administration of JWH-018, a cannabinoid receptor agonist, did not affect the CPP score in the GAD67 knockdown mice group compared with the control group. Conclusions and Relevance: These results suggest that striatal GAD67 reduces GABAergic neuronal activity and may cause ketamine-induced NMDA receptor inhibition. Consequently, GAD67 downregulation induces vulnerability to the drug reward behavior of ketamine.

Gene Expression Profiling of Rewarding Effect in Methamphetamine Treated Bax-deficient Mouse

  • Ryu, Na-Kyung;Yang, Moon-Hee;Jung, Min-Seok;Jeon, Jeong-Ok;Kim, Kee-Won;Park, Jong-Hoon
    • BMB Reports
    • /
    • 제40권4호
    • /
    • pp.475-485
    • /
    • 2007
  • Methamphetamine is an illicit drug that is often abused and can cause neuropsychiatric and neurotoxic damage. Repeated administration of psychostimulants such as methamphetamine induces a behavioral sensitization. According to a previous study, Bax was involved in neurotoxicity by methamphetamine, but the function of Bax in rewarding effect has not yet been elucidated. Therefore, we have studied the function of Bax in a rewarding effect model. In the present study, we treated chronic methamphetamine exposure in a Bax-deficient mouse model and examined behavioral change using a conditioned place preference (CPP) test. The CPP score in Bax knockout mice was decreased compared to that of wild-type mice. Therefore, we screened for Bax-related genes that are involved in rewarding effect using microarray technology. In order to confirm microarray data, we applied the RT-PCR method to observe relative changes of Bcl2, a pro-apoptotic family gene. As a result, using our experiment microarray, we selected genes that were associated with Bax in microarray data, and eventually selected the Tgfbr2 gene. Expression of the Tgfbr2 gene was decreased by methamphetamine in Bax knockout mice, and the gene was overexpressed in Bax wild-type mice. Additionally, we confirmed that Creb, FosB, and c-Fos were related to rewarding effect and Bax using immunohistochemistry.