Inhibitory Effects of Paeonol on Morphine-Induced Locomotor Sensitization and Conditioned Place Preference in Mice

  • Eun, Jae-Soon (College of Pharmacy, Woosuk University) ;
  • Bae, Ki-Hwan (College of Pharmacy, Chungnam National University) ;
  • Yun, Yeo-Pyo (College of Pharmacy, Chungbuk National University) ;
  • Hong, Jin-Tae (College of Pharmacy, Chungbuk National University) ;
  • Kwon, Han-Na (College of Pharmacy, Chungbuk National University) ;
  • Oh, Ki-Wan (College of Pharmacy, Chungbuk National University)
  • Published : 2006.10.01

Abstract

The inhibitory effects of paeonol, a major compound of Paeoniae radix, on the development of locomotor sensitization, conditioned place preference (CPP) and dopamine receptor supersensitivity induced by the repeated administration of morphine were investigated through behavioral experiments. A single administration of morphine produces hyperlocomotion. Repeated administration of morphine develops sensitization (reverse tolerance), a progressive enhancement of locomotion, which is used as a model for studying the drug-induced drug-seeking behaviors, and CPP, which is used as a model for studying drug reinforcement. Paeonol inhibited morphine-induced hyperlocomotion, sensitization and CPP. In addition, paeonol inhibited the development of postsynaptic dopamine receptors supersensitivity, which may be an underlying common mechanism that mediates the morphine-induced dopaminergic behaviors such as sensitization and CPP. Apomorphine (a dopamine agonist)-induced climbing behaviors also were inhibited by a single direct administration of paeonol. These results provide evidence that paeonol exerts anti-dopaminergic activity, and it is suggested that paeonol may be useful for the prevention and therapy of these adverse actions of morphine.

Keywords

References

  1. Babbini, M. and Davis, W. M., Time-dose relationship for locomotor activity effects of morphine after acute or repeated treatment. Br. J. Phrmacol., 46, 213-224 (1972) https://doi.org/10.1111/j.1476-5381.1972.tb06866.x
  2. Bardo, M. T., Miller, J. S., and Neisewander, J. S., Conditioned place preference with morphine: The effect of extinction training on the reinforcing CR. Pharmacol. Biochem. Behav., 21, 545-549 (1984) https://doi.org/10.1016/S0091-3057(84)80037-4
  3. Beninger, R. J. and Miller, R., Dopamine D1-like receptors and reward-related incentive learning. Neurosci. Biobehav. Rev., 22, 335-345 (1998) https://doi.org/10.1016/S0149-7634(97)00019-5
  4. Bhargava, H. N., Cyclo (Leu-Gly) inhibits the development of morphine induced analgesic tolerance and dopamine receptor supersensitivity in rat. Life Sci., 27, 117-123 (1980) https://doi.org/10.1016/0024-3205(80)90452-X
  5. Chiu, C. T., Ma, T., and Ho, I. K., Attenuation of methamphetamineinduced behavioral sensitization in mice by systemic administration of naltrexone. Brain Res., 67, 100-109 (2005) https://doi.org/10.1016/j.brainresbull.2005.05.028
  6. Chou, T. C., Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia. Br. J. Pharmacol., 139, 1146-1152 (2003) https://doi.org/10.1038/sj.bjp.0705360
  7. Funada, M., Suzuki, T., and Misawa M., The role of dopamine D1-receptors in morphine-induced hyperlocomotion in mice. Neurosci. Lett., 169, 1-4 (1994) https://doi.org/10.1016/0304-3940(94)90342-5
  8. Huong, N. T. T., Matsumoto, K., Yamasaki, K., Duc, N. M., Nham, N. T., and Watanabe, H., Majonoside-R2, a major constituent of Vietnamese ginseng, attenuates opioid-induced antinociception. Pharmacol. Biochem. Behav., 57, 285-291 (1997) https://doi.org/10.1016/S0091-3057(96)00348-6
  9. Iwamoto, E. T., Locomotor activity and antinociception after putative mu, kappa and sigma opioid receptor agonists in the rats: influence of dopaminergic agonists and antagonists. J. Pharmacol. Exp. Ther., 217, 451-460 (1981)
  10. Jeziorski, M. and White, F. J., Dopamine receptor antagonist prevents expression, but not development, of morphine sensitization. Eur. J. Pharmacol., 275, 235-244 (1995) https://doi.org/10.1016/0014-2999(94)00779-7
  11. Kalivas, P. W. and Duffy, P., Sensitization to repeated morphine injection in rat: possible involvement of A10 dopamine neurons. J. Pharmacol. Exp. Ther., 241, 204-212 (1987)
  12. Kalivas, P. W. and Stewart, J., Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Rev., 16, 223-244 (1991) https://doi.org/10.1016/0165-0173(91)90007-U
  13. Kim, H. S., Jang, C. G., and Lee, M. K., Antinarcotic effects of the standardized ginseng extract G115 on morphine. Planta Med., 56, 158-163 (1990) https://doi.org/10.1055/s-2006-960915
  14. Kim, H. S., Kang, J. G., Rheu, H. M., Cho, D. H., and Oh, K. W., Blockade by ginseng total saponin of the development of methamphetamine reverse tolerance and dopamine receptor supersensitivity in mice. Planta Med., 61, 22-25 (1995) https://doi.org/10.1055/s-2006-957991
  15. Kim, H. S., Kang, J. G., and Oh, K. W., Inhibition by ginseng total saponin of the development of morphine tolerance and dopamine receptor supersensitivity in mice. Gen. Pharmac., 26, 1071-1076 (1995) https://doi.org/10.1016/0306-3623(94)00267-Q
  16. Kim, H. S., Jang, C. G., Oh, K. W., Seong, Y. H., Rheu, H. M., Cho, D. H., and Kang, S. Y., Effects of ginseng total saponin on cocaine-induced hyperactivity and conditioned place preference in mice. Pharmacol. Biochem. Behav., 53, 185- 190 (1996) https://doi.org/10.1016/0091-3057(95)00170-0
  17. Kim, H. S., Jang, C. G., Oh, K. W., Oh, S., Rheu, H. M., Rhee, G. S., Seong, Y. H., and Park, W. K., Effects of ginseng total saponin on morphine-induced hyperactivity and conditioned place preference in mice. J. Ethnopharmacol., 60, 33-42 (1998) https://doi.org/10.1016/S0378-8741(97)00131-1
  18. Kim, H. S., Hong, Y. T., and Jang, C. G., Effects of the ginsenosides Rg1 and Rb1 on morphine-induced hyperactivity and reinforcement in mice. J. Pharm. Pharmacol., 50, 555-560 (1998) https://doi.org/10.1111/j.2042-7158.1998.tb06198.x
  19. Kim, H. S., Kim, G. S., and Oh, K. W., Inhibition by ginsenosides Rb1 and Rb2 of cocaine-induced hyperactivity, conditioned place preference and postsynaptic dopamine receptor supersensitivity in mice. Pharmacol. Biochem. Behav., 63, 407-412 (1999) https://doi.org/10.1016/S0091-3057(99)00020-9
  20. Kuribara, H., Modification of morphine sensitization by opioid and dopamine receptor antagonist: evaluation by studying ambulation in mice. Eur. J. Pharmacol., 275, 251-258 (1995) https://doi.org/10.1016/0014-2999(94)00787-8
  21. Kuribara, H. and Tadokoro, S., Reverse tolerance to ambulationincreasing effects of MAP and MOR in 6 mouse strains. Jpn. J. Pharmacol., 49, 197-203 (1989) https://doi.org/10.1254/jjp.49.197
  22. Kuschinsky, K. and Hornykiewicz, O., Effects of morphine on striatal dopamine metabolism: possible mechanism of its opposite effect on locomotor activity in rats and mice. Eur. J. Pharmacol., 26, 41-50 (1974) https://doi.org/10.1016/0014-2999(74)90072-7
  23. Leone, P. and Di Chiara, G., Blockade of D-1 receptors by SCH23390 antagonizes morphine- and amphetamine-induced place preference conditioning. Eur. J. Pharmacol., 135, 251- 254 (1990) https://doi.org/10.1016/0014-2999(87)90621-2
  24. Li, J. X., Zhang, Q., and Liang, J. H., Valproate prevents the induction, but not the expression of behavioral expression of morphine sensitization in mice. Behav. Brain Res., 152, 251-257 (2004) https://doi.org/10.1016/j.bbr.2003.10.006
  25. Li, J. X., Zhao, W. L., and Liang, J. H., Effects of carbamazepine on morphine-induced behavioral sensitization in mice. Brain Res., 1019, 77-83 (2004) https://doi.org/10.1016/j.brainres.2004.05.082
  26. Manzanedo, C., Aguilar, M. A., and Minarro, J., The effects of dopamine $D_2$ and $D_3$ antagonist on spontaneous motor activity and morphine-induced hyperactivity in male mice. Psychopharmacol., 143, 82-88 (1999) https://doi.org/10.1007/s002130050922
  27. Mi, X. J., Chen, S. W., Wang, W. J., Wang, R., Zhang, Y. J., Li, W. J., and Li, Y. L., Anxiolytic effects of paeonol in mice. Pharmacol. Biochem. Behav., 81, 683-687 (2005) https://doi.org/10.1016/j.pbb.2005.04.016
  28. Mucha, R. F., Van der Kooy, D., O'Shaughnessy, M., and Bucenieks, P., Drug reinforcement studied by the use of place conditioning in rat. Brain Res., 243, 91-105 (1982) https://doi.org/10.1016/0006-8993(82)91123-4
  29. Narita, M., Suzuki, T., Misawa, M., and Nagase, H., Antagonism of the morphine-induced Straub-tail reaction by k-opioid receptor activation in mice. Psychopharmacol., 10, 254-256 (1993)
  30. Protais, P., Costentin, J., and Schwartz, J. C., Climbing behavior induced by apomorphine in mice: A simple test for the study of dopamine receptors in striatum. Psychopharmacol., 50, 1- 6 (1976) https://doi.org/10.1007/BF00634146
  31. Rethy, C. R., Smith, C. B., and Villarreal, J. E., Effects of narcotic analgesics upon the locomotor activity and brain catecholamine content of the mouse. J. Pharmacol. Exp. Ther., 176, 472-479 (1971)
  32. Ritzman, R. F., Walter, B., Bhargava, H. N., and Flexner, L. B., Blockade of narcotic-induced dopamine receptor supersensitivity by cyclo (Leu-Gly). Proc. Natl. Acad. Sci., 76, 5997-6018 (1979)
  33. Robinson, T. E. and Becker, J. B., Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev., 11, 157-198 (1986) https://doi.org/10.1016/0165-0173(86)90002-0
  34. Robinson, T. E. and Berridge, K. C., The neuronal basis of drug craving: an incentive-sensitization theory of drug craving. Brian Res. Rev., 18, 247-291 (1993) https://doi.org/10.1016/0165-0173(93)90013-P
  35. Seerano, A., Aguilar, M. A., Manzanedo, C., Rodriguez-Arias, M., and Minarro, J., Effects of D1 and D2 antagonists on the sensitization to the motor effects of morphine in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 26, 1263-1271 (2002) https://doi.org/10.1016/S0278-5846(02)00265-8
  36. Shuster, L., Webster, G. W., and Yu, G., Increased running response to morphine in morphine-pretreated mice. J, Pharmacol. Exp., 192, 64-72 (1975)
  37. Wood, P. L. and Alter, C. A., Dopamine release in vivo from neostriatal mesolimbic and mesocortical neurons utility of 3- methoxytryamine measurement. Pharmacol. Rev., 40, 163- 187 (1998)
  38. Yoon, I. S., Kim, H. S., Hong, J. T., Lee, M. K., and Oh, K. W., Inhibition of muscimol on morphine-induced hyperactivity, reverse tolerance and postsynaptic dopamine receptor supersensitivity. Pharmacol., 65, 204-209 (2002) https://doi.org/10.1159/000064345
  39. Van Ree, J. M., Gerrits, M. A. F. M., and Vanderschuren, L. J. M. J. Opioid, reward and addiction: An encounter of biology, psychology, and medicine. Pharmacol. Rev., 51, 341-396 (1999)