• Title/Summary/Keyword: Conditioned Medium

Search Result 174, Processing Time 0.038 seconds

Increasement of Secondary Metabolites and Antioxidative Activity in Panax ginseng Adventitious Root by Methyl Jasmonate (Methyl jasmonate 처리에 의한 인삼 (Panax ginseng C.A. Meyer) 부정근의 이차대사산물 및 항산화활성 증가)

  • Lim Soon;Bae Ki-Hwa;Shin Cha-Gyun;Kim Yoon-Young;Kim Yun-Soo
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.225-231
    • /
    • 2005
  • This study was initiated to investigate the impacts of methyl jasmonate (MeJA) on adventitious root growth of Panax ginseng, the production of secondary metabolites, such as ginsenosides and phenolic compounds, and antioxidative activity. Among various concentrations of MeJA, $100\;{\mu}M$ MeJA increased the ginsenosides accumulation to 26.6 mg/g dry wt, about 8 times higher than the control in ginseng adventitious roots (GAR). In addition, $50\;{\mu}M$ MeJA increased the accumulation of phenolic compounds to 0.38 mg/g dry wt, about 3 times higher than control in GAR. This MeJA treatment was more effective in conditioned medium (CM) which obtained in bioreactor after 40 days of culture than in fresh medium (FM). Treatment of $100\;{\mu}M$ MeJA in CM increased the accumulation of ginsenosides (1.7 times) and phenolic compounds (1.2 times) more than in FM, respectively. Consequently, these high accumulation of ginsenosides and phenolic compounds by MeJA led to increase the antioxidative activities expressed to the DPPH scavenging activity (over $78.3\%$). The DPPH scavenging activity in control was $45.5\%$.

Anti-inflammatory Effects of Epimedii Herba Water Extract through Inhibition of Nuclear Factor-κB in RAW 264.7 Cells (RAW 264.7 세포에서 음양곽(淫羊藿) 물 추출물의 nuclear factor-κB 억제를 통한 항염증 효과)

  • Jung, Ji Yun;Byun, Sung Hui;Park, Chung A;Cho, Il Je;Kim, Sang Chan
    • The Korea Journal of Herbology
    • /
    • v.33 no.2
    • /
    • pp.19-28
    • /
    • 2018
  • Objectives : Epimedii Herba has been frequently used in Korean Traditional Medicine to treat impotence, spermatorrhoea, exophthalmos, and forgetfulness. Present study investigated anti-inflammatory effects of Epimedii Herba water extract (EWE) and attempted to elucidate molecular mechanisms involved. Methods : To explore anti-inflammatory effects of EWE, RAW 264.7 cells, a murine macrophage cell line, were pretreated with $10-100{\mu}g/m{\ell}$ of EWE, and then subsequently exposed to $1{\mu}g/m{\ell}$ of lipopolysaccharide (LPS). Levels of nitric oxide (NO), interleukin-6, $interleukin-1{\beta}$, and tumor necrosis $factor-{\alpha}$ were monitored in the medium. Expression levels of inducible nitric oxide synthase and cyclooxygenase-2 were determined by immunoblot and real-time PCR analyses. Signaling pathways related with nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) and mitogen-activated protein kinases were monitored to elucidate molecular mechanisms involved. Finally, the role of three flavonoid compounds in EWE on LPS-mediated NO production were investigated. Results : In conditioned medium, pretreatment of EWE ($100{\mu}g/m{\ell}$) significantly inhibited LPS-stimulated NO and pro-inflammatory cytokine production. In addition, EWE attenuated the expressions of inducible nitric oxide synthase and cyclooxygenase-2 by LPS. EWE prevented the phosphorylation and degradation of inhibitory ${\kappa}B{\alpha}$, nuclear translocation of $NF-{\kappa}B$, and DNA binding of $NF-{\kappa}B$, while EWE did not change the phosphorylation of mitogen-activated protein kinases by LPS. Moreover, icariin, icaritin, and quercetin partly, but significantly, inhibited the LPS-stimulated NO production. Conclusions : These results suggest that EWE has an ability to prevent inflammation in macrophages through inhibition of $NF-{\kappa}B$ signaling pathway.

Peroxidase Activity of Peroxidasin Affects Endothelial Cell Growth (내피 세포 성장에 영향을 미치는 PXDN의 peroxidase 활성)

  • Kyung A Ham;Seong Bin Jo;Min Ju Lee;Young Ae Joe
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.8-14
    • /
    • 2023
  • Peroxidasin (PXDN), a multidomain heme peroxidase containing extracellular matrix (ECM) motifs, as well as a catalytic domain, catalyzes the sulfilimine crosslink of collagen IV (Col IV) to reinforce Col IV scaffolds. We previously reported that PXDN is required for endothelial cell (EC) survival and growth signaling through sulfilimine crosslink-dependent matrix assembly. In this study, we examined whether peroxidase activity is required for PXDN function in ECs. First, we constructed a mutant PXDN by point mutation of two highly conserved amino acids, Q823 and D826, which are present in the active site of the peroxidase domain. After isolation of HEK293 clones highly expressing the mutant protein, conditioned medium (CM) was obtained after incubating the cells in serum-free medium for 24 hours and then analyzed by Western blot analysis under nonreducing conditions. The results revealed that the mutant PXDN formed a trimer and that it was cleaved by proprotein convertase-like wild-type (WT) PXDN. However, peroxidase activity was not detected in the CM containing the mutant PXDN, in contrast to that of WT PXDN. In addition, the sulfilimine crosslink ability of the mutant PXDN was lost. Moreover, the CM containing the mutant PXDN failed to promote the growth of PXDN-depleted ECs, unlike the CM containing WT PXDN. These results suggest that the peroxidase activity of PXDN affects EC growth by forming a sulfilimine crosslink.

Effect of Antioxidants for Porcine Oocytes during In Vitro Maturation, Fertilization and Development (돼지 난포란으로부터 체외수정란의 생산에 있어서 항산화제의 첨가가 배 발달에 미치는 효과)

  • Park H.;Kim J. Y.;Kim J. Y.;Lee J. H.;Park H. D.;Kim J. M.
    • Journal of Embryo Transfer
    • /
    • v.19 no.3
    • /
    • pp.245-255
    • /
    • 2004
  • In recent years, an increasing number of studies on pig in vitro maturation(IVM) and in vitro fertilization(IVF) have been separated. the wide range of new technologies, including that in applied molecular genetics, has increased this interest. the production of viable porcine embryos in vitro is a prerequisites for the successful production of transgenic pigs to date. The efficiency of IVM/IVF techniques in the porcine is lower than that obtained in other species such as cattle and mouse. The several problems are generally thought to be the cause of poor results: the low rate of MPN formation derived from inadequate IVM of oocytes, the high incidence of polyspermy after IVF and cell blocking at 4 cell during embryos culture. For there reasons overcoming, many studies have been conducted to improve in vitro embryo-genic competence of oocytes. In the last several years, many maturation culture media have been evaluated and various exogenous factors such as hormones and grows factors have been tested to improve the efficiency of porcine in vitro system. In the study several antioxidants have been examined to improve in vitro fertilization and development of porcine oocytes. In this study, several antioxidants were examined to determine the effects on the development of oocytes to the cleavage, morula and blastocyst stage when added at the maturation(IVM) or in vitro fertilization(IVF) or in vitro culture(IVC) of porcine embryos. Porcine oocytes were matured, fertilized and embryos were cultured in defind conditioned medium in vitro with or without supplementation with the antioxidents of cysteine, catalase and glutathione. 1. Significant improvement of blastocyst rate (27.2% versus 15.4%, p<0.05) were achieved when catalase(500U/$m\ell$) were added to TCM-199 medium and morula rate(72.0% versus 53.9%, p<0.05) were significantly higher when glutathione(1.0mM/$m\ell$) were added to TCM-199 medium than those of control. 2. In mTBM medium for oocytes fertilization, the addition of cysteine, catalase and glutathione had no positive effect on embryonic development. glutathione had no positive effect on embryonic development. In conclusion, this study shows that addition of catalase, gluththione during IVM improved the rate of porcine embryo development.

Expression of TIMP1, TIMP2 Genes by Ionizing Radiation (이온화 방사선에 의한 TIMP1, TIMP2 유전자 발현 측정)

  • Park Kun-Koo;Jin Jung Sun;Park Ki Yong;Lee Yun Hee;Kim Sang Yoon;Noh Young Ju;Ahn Seung Do;Kim Jong Hoon;Choi Eun Kyung;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.171-180
    • /
    • 2001
  • Purpose : Expression of TIMP, intrinsic inhibitor of MMP, is regulated by signal transduction in response to genotoxins and is likely to be an important step in metastasis, angiogenesis and wound healing after ionizing radiation. Therefore, we studied radiation mediated TIMP expression and its mechanism in head and neck cancer cell lines. Materials and Methods : Human head and neck cancer cell lines established at Asan Medical Center were used and radiosensitivity $(D_0)$, radiation cytotoxicity and metastatic potential were measured by clonogenic assay, n assay and invasion assay, respectively. The conditioned medium was prepared at 24 hours and 48 hours after 2 Gy and 10 Gy irradiation and expression of TIMP protein was measured by Elisa assay with specific antibodies against human TIMP. hTIMP1 promoter region was cloned and TIMP1 luciferase reporter vector was constructed. The reporter vector was transfected to AMC-HN-1 and -HN-9 cells with or without expression vector Ras, then the cells were exposed to radiation or PMA, PKC activator. EMSA was peformed with oligonucleotide (-59/-53 element and SP1) of TIMP1 promoter. Results : $D_0$ of HN-1, -2, -3, -5 and -9 cell lines were 1.55 Gy, 1.8 Gy, 1.5 Gt, 1.55 Gy and 2.45 Gy respectively. n assay confirmed cell viability, over $94\%$ at 24hrs, 48hrs after 2 Gy irradiation and over 73% after 10 Gy irradiation. Elisa assay confirmed that cells secreted TIMP1, 2 proteins continuously. After 2 Gy irradiation, TIMP2 secretion was decreased at 24hrs in HN-1 and HN-9 cell lines but after 10 Gy irradiation, it was increased in all cell lines. At 48hrs after irradiation, it was increased in HN-1 but decreased in HN-9 cells. But the change in TIMP secretion by RT was mild. The transcription of TIMP1 gene in HN-1 was induced by PMA but in HN-9 cell lines, it was suppressed. Wild type Ras induced the TIMP-1 transcription by 20 fold and 4 fold in HN-1 and HN-9 respectively. The binding activity to -59/-53, AP1 motif was increased by RT, but not to SP1 motif in both cell lines. Conclusions : We observed the difference of expression and activity of TIMPs between radiosensitive and radioresistant cell line and the different signal transduction pathway between in these cell lines may contribute the different radiosensitivity. Further research to investigate the radiation response and its signal pathway of TIMPs is needed.

  • PDF

Transforming Growth Factor-$\beta$ is a Possible Paracrine Mediator in the Human Endometrial Decidualization (인간자궁내막의 탈락막화 (Decudualization)에 있어서 TGF-$\beta$ (Transforming Growth Factor-$\beta$)의 역할)

  • Park, Dong-Wook;Choi, Dong-Soon;Kim, Mi-Ran;Hwang, Kyung-Joo;Jo, Mi-Yeong;Ahn, Seong-Hee;Min, Churl-K.;Ryu, Hee-Sug
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.1
    • /
    • pp.65-75
    • /
    • 2003
  • Objectives: To investigate the role of TGF (Transforming growth factor-$\beta$) involved in the paracrinic communication during decidualization between UEC (uterine epithelial cells) and USC (uterine stromal cells), we have employed a co-culture system composed of human endometrial epithelial and stromal cells in defined hormonal conditions. Design: In the co-culture, endometrial epithelial cells cultured in the matrigel-coated cell culture insert are seeded on top of the endometrial stromal cells cultured within a collagen gel. The co-culture was maintained for 48 hours under the following hormonal conditions: progesterone dominant condition (100 nM P4 and 1 nM E2) or estrogen-dominant condition (100 nM E2 and 1 nM P4). 10 ng/ ml HGF and/or 10 ng/ml TGF-$\beta$1 are added. Methods: RT-PCR is utilized to detect mRNAs quantitatively. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemical staining are utilized to detect proteins in the tissue. Results: Prolactin mRNA is expressed in the co-cultured stromal cells under the progesterone dominant condition. TGF-$\beta$1 and its receptors are expressed in both the co-cultured epithelial and stromal cells irrespective of the steroid present, which is in contrast with no or negligible expression of TGF-$\beta$1 or its receptor in cells separately cultured. Both estrogen and progesterone significantly elevate the concentration of hepatocyte growth factor (HGF) in the conditioned medium of the co-culture with the value of 4, 325 pg/ml in E2-dominant and 2, 000 pg/ml in P4-dominant condition compare to 150 pg/ml in no hormone. In separately cultured stromal cells, administration of HGF induces the expression of TGF receptor 1 in both hormonal conditions, but induction of TGF receptor 2 is only manifest in the P4-dominant condition. Administration of TGF-$\beta$ and HGF directly induce the decidualization marker prolactin mRNA in separately cultured stromal cells. Conclusion: It is likely that steroid hormones induces prolactin mRNA indirectly by promoting the cell to cell communication between the stromal and the epithelial cells. TGF-$\beta$ and HGF are two possible paracrine mediators in the human endometrial decidualization.

A Study on the Inhibitory Effect of Yeongdamsagantang on Alzheimer in $A{\beta}-oligomer-induced$ Neuro 2A Cell Lines (($A{\beta}-oligomer$로 유도된 Neuro2A 세포주에서 용담사간탕(龍膽瀉肝湯)의 치매 억제 효과)

  • Kim, Hae-Su;Shin, Yoo-Jeong;Park, Jong-Hyuk;Kim, Seung-Mo;Paek, Kyung-Min;Park, Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.151-164
    • /
    • 2008
  • Objective: To investigate the effects of Yeongdamsagantang (YDGT) on apoptosis of neuronal cells that can result in dementia. Method: The water extract of the YDGT was tested in vitro for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with $A{\beta}$ oligomer-related dementias. $A{\beta}$ oligomers derived from proteolytic processing of the ${\beta}-amyloid$ precursor protein (APP), including the $amyloid-{\beta}$ peptide $(A{\beta})$, play a critical role in the pathogenesis of Alzheimer's disease. A neuroblastoma cell line stably expressing an $A{\beta}$ oligomerassociated neuronal degeneration was used to investigate if YDGT inhibits formation of $A{\beta}$ oligomer. To measure the ATP generating level in mitochondrial membrane, luciferin/luciferase luminescence kit (Promega) and luminator was used, and to survey the protein's apparition, confocal microscopy was used. Result: $A{\beta}oligomer$ had a profound attenuation in the increase in CT105 expressing neuro2A cells from YDGT. Experimental evidence indicates that YDGT protected against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. We demonstrated that YDGT inhibited formation of $amyloid-{\beta}$ $(A{\beta})$ oligomers, which were the behavior, and possibly causative, features of AD. The decreased $A{\beta}$ oligomer in the presence of YDGT was observed in the conditioned medium of this $A{\beta}oligomer-secreting$ cell line under in vitro. In the cells, YDGT significantly attenuated mitochondrion-initiated apoptosis. Conclusion: (i) a direct $A{\beta}$ oligomer toxicity and the apoptosis initiated by the mitochondria; and (ii) multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer aggregation, underlie the neuroprotective effects of YDGT.

  • PDF

Standardization of Quality and Inhibitory Effect of Alzheimer in $A{\beta}$ Oligomer-induced H19-7 Cells by LMK02 (LMK02의 품질규격화와 $A{\beta}$ 올리고머에 의해 유도된 희주해마 H19-7세포주에 미치는 항치매효과)

  • Kang, Hyung-Won;Kim, Sang-Tae;Son, Hyeong-Jin;Han, Pyeong-Leem;Cho, Hyoung-Kwon;Lee, Young-Jae;Lyu, Yeoung-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.397-404
    • /
    • 2009
  • For standardization of LMK02 quality, Ginsenoside Rg3 of Red Ginseng and Decursin of Angelica gigas Nakai in the constituents of LMK02 were estimated as indicative components. From LMK02 water extract, has been used in vitro test for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with APP-related dementias and Alzheimer's disease (AD). $A{\beta}$ oligomer derived from proteolytic processing of the ${\beta}$-amyloid precursor protein (APP), including the amyloid-${\beta}$ peptide ($A{\beta}$), play a critical role in the pathogenesis of Alzheimer's dementia. We determined that oligomer amyloid-${\beta}$ ($A{\beta}$) have a profound attenuation in the increase in rat hippocampus H19-7 cells from. Experimental evidence indicates that LMK02 protects against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. Using a hippocampus cell line on $A{\beta}$ oligomer-induced neuronal cytotoxicity, we demonstrated that LMK02 inhibits formation of $A{\beta}$ oligomer, which are the behavior, and possibly causative, feature of AD. In the Red Ginseng, the average amounts of Ginsenoside Rg3 were $47.04{\mu}g/g$ and $42.3{\mu}g/g$, 90 % of its weight were set as a standard value. And, in the Angelica gigas Nakai, the average amounts of Decursin were 2.71 mg/g and 2.44mg/g, 90 % of its weight were also set as a standard value. The attenuated $A{\beta}$ oligomer in the presence of LMK02 was observed in the conditioned medium of this $A{\beta}$ oligomer-induced cells under in vitro. In the cells, LMK02 significantly activated antiapoptosis and decreased the production of ROS. These results suggest that neuronal damage in AD might be due to two factors: a direct $A{\beta}$ oligomer toxicity and multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer, underlie the neuroprotective effects of LMK02 treatment.

The Effects of Mechanical Strain on Bone Cell Proliferation and Recruitment Induced by Osteocytes

  • Ko, Seong-Hee;Lee, Jiy-Hye;Kim, So-Hee
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.179-186
    • /
    • 2008
  • Several lines of evidence suggest that osteocytes play a critical role in bone remodeling. Both healthy and apoptotic osteocytes can send signals to other bone surface cells such as osteoblasts, osteoclasts, osteoclast precursors, and bone lining cells through canalicular networks. Osteocytes responding to mechanical strain may also send signals to other cells. To determine the role for osteocytes an mechanical strain in bone remodeling, we examined the effects of fluid flow shear stress on osteoclast precursor cell and osteoblast proliferation and recruitment induced by osteocytes. In addition, the effects of fluid flow shear stress on osteocyte M-CSF, RANKL, and OPG mRNA expression were also examined. MLO-Y4 cells were used as an in vitro model for osteocytes, RAW 264.7 cells and MOCP-5 cells as osteoclast precursors, and 2T3 cells as osteoblasts. MLO-Y4 cells conditioned medium (Y4-CM) was collected after 24h culture. For fluid flow experiments, MLO-Y4 cells were exposed to 2h of pulsatile fluid flow (PFF) at 2, 4, 8, $16{\pm}0.6\;dynes/cm^2$ using the Flexcell $Streamer^{TM}$ system. For proliferation assays, MOCP-5, RAW 264.7, and 2T3 cells were cultured with control media or 10-100% Y4 CM. Cells were cultured for 3d, and then cells were counted. RAW 264.7 and 2T3 cell migration was assayed using transwells with control media or 10-100% Y4-CM. M-CSF, RANKL and OPG in MLO-Y4 mRNA expression was determined by semiquantitative RT-PCR. Y4-CM increased osteoclast precursor proliferation and migration, but decreased 2T3 cell proliferation and migration. CM from MLO-Y4 cells exposed to PFF caused decreased RAW 267.4 cell proliferation and migration and 2T3 migration compared to control Y4-CM. However, Y4-CM from cells exposed to PFF had no effect on 2T3 osteoblastic cell proliferation. PFF decreased RNAKL mRNA and increased OPG mRNA in MLO-Y4 cells compared to control(without PFF). PFF had no effect on M-CSF mRNA expression in MLO-Y4 cells. These results suggest that osteocytes can regulate bone remodeling by communication with osteoclast precursors and osteoblasts and that osteocytes can communicate mechanical signals to other cells.

Role of LPS-activated Macrophages in the Differentiation of Mesenchymal Stem Cells into Smooth Muscle Cells (중간엽 줄기세포의 평활근 세포로의 분화에서 LPS에 의해 활성화된 대식세포의 역할)

  • Lee, Mi Jeong;Do, Eun Kyoung;Kim, Jae Ho
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.137-142
    • /
    • 2013
  • Human adipose-derived mesenchymal stem cells (hMSCs) are highly useful for vascular regeneration of injured or inflamed tissue. Lipopolysaccharide (LPS) is a potent activator of macrophages and stimulates macrophages to release inflammatory cytokines. In the present study, we explored the role of LPS-activated macrophages in the differentiation of hMSCs to smooth muscle cells (SMCs). We demonstrated that conditioned medium from LPS-induced macrophages (LPS CM) stimulates differentiation of hMSCs to SMCs, as evidenced by increased expression of smooth muscle-specific markers, including alpha-smooth muscle actin (${\alpha}$-SMA), smooth muscle-myosin heavy chain, and calponin. LPS induced the secretion of $PGF2{\alpha}$ from macrophages, and $PGF2{\alpha}$ treatment stimulated expression levels of SMC-specific markers in hMSCs. Furthermore, small interfering RNA-mediated silencing of the $PGF2{\alpha}$ receptor inhibited LPS CM-stimulated ${\alpha}$-SMA expression. These results suggest that LPS-activated macrophages promote differentiation of hMSCs to SMCs through a $PGF2{\alpha}$-dependent mechanism.