Effect of Antioxidants for Porcine Oocytes during In Vitro Maturation, Fertilization and Development

돼지 난포란으로부터 체외수정란의 생산에 있어서 항산화제의 첨가가 배 발달에 미치는 효과

  • 박향 (차병원 여성의학연구소 불임의학연구소) ;
  • 김재영 (차병원 여성의학연구소 불임의학연구소) ;
  • 김자영 (차병원 여성의학연구소 불임의학연구소) ;
  • 이정형 (포천중문의과대학교) ;
  • 박흠대 (대구대학교 식품ㆍ생명ㆍ화학공학부) ;
  • 김재명 (포천중문의과대학교)
  • Published : 2004.12.01

Abstract

In recent years, an increasing number of studies on pig in vitro maturation(IVM) and in vitro fertilization(IVF) have been separated. the wide range of new technologies, including that in applied molecular genetics, has increased this interest. the production of viable porcine embryos in vitro is a prerequisites for the successful production of transgenic pigs to date. The efficiency of IVM/IVF techniques in the porcine is lower than that obtained in other species such as cattle and mouse. The several problems are generally thought to be the cause of poor results: the low rate of MPN formation derived from inadequate IVM of oocytes, the high incidence of polyspermy after IVF and cell blocking at 4 cell during embryos culture. For there reasons overcoming, many studies have been conducted to improve in vitro embryo-genic competence of oocytes. In the last several years, many maturation culture media have been evaluated and various exogenous factors such as hormones and grows factors have been tested to improve the efficiency of porcine in vitro system. In the study several antioxidants have been examined to improve in vitro fertilization and development of porcine oocytes. In this study, several antioxidants were examined to determine the effects on the development of oocytes to the cleavage, morula and blastocyst stage when added at the maturation(IVM) or in vitro fertilization(IVF) or in vitro culture(IVC) of porcine embryos. Porcine oocytes were matured, fertilized and embryos were cultured in defind conditioned medium in vitro with or without supplementation with the antioxidents of cysteine, catalase and glutathione. 1. Significant improvement of blastocyst rate (27.2% versus 15.4%, p<0.05) were achieved when catalase(500U/$m\ell$) were added to TCM-199 medium and morula rate(72.0% versus 53.9%, p<0.05) were significantly higher when glutathione(1.0mM/$m\ell$) were added to TCM-199 medium than those of control. 2. In mTBM medium for oocytes fertilization, the addition of cysteine, catalase and glutathione had no positive effect on embryonic development. glutathione had no positive effect on embryonic development. In conclusion, this study shows that addition of catalase, gluththione during IVM improved the rate of porcine embryo development.

포유동물 난자의 체외수정은 외래유전자 도입에 의한 형질전환동물 생산과 우수한 형질을 가진 개체의 보존, 인간의 불임연구 등과 같은 수정란이식 기술로서 널리 이용되고 있다. 돼지 난포란을 이용한 체외수정란의 생산은 초기단계인 체외성숙 기술의 미확립, 그로인한 체외수정 시 높은 다정자 침입율과 불완전한 웅성전핵 형성 몇 체외발달능 정지현상(cell blocking) 등 어려움 때문에 아직도 다른 가축보다 양질의 수정란을 생산하기가 어려운 것으로 알려져 있다. 이와 같은 것을 해결하기 위하여 많은 연구자들은 배양액내에 hormon, growth factor, antioxdants 등과 같은 외인성 인자들을 첨가하고 있다. 이들 인자 중 antioxdant는 free radical을 소거하고 과산화물 생성을 억제하여 난자를 산화적 스트레스로부터 보호한다. 따라서 본 연구는 돼지 난포란으로부터 체외수정란의 생산에 있어서 배양액내 cysteine, catalase 및 glutathione의 첨가가 체외성숙, 체외수정 및 체외배양에 어떤 영향을 미치는지를 검토하였다. 실험 1은 체외성숙용 배양액인 TCM-199 용액에 catalase(100, 200, 500U/$m\ell$)와 glutathione(0.5, 1.0, 1.5mM/$m\ell$)의 첨가, 실험 2는 성숙된 난자의 체외수정용 배양액인 mTBM 용액에 cysteine(0.1, 1.6, 1.0mM/$m\ell$), catalase(100, 200, 500U/$m\ell$)와 glutathione(0.5, 1.0, 1.5mM/$m\ell$)의 첨가, 실험 3은 체외성숙 및 체외수정된 난자의 체외배양용 배양액인 NCSU-23 용액에 cysteine(0.1, 1.6, 1.0mM/$m\ell$), catalase(100, 200, 500U/$m\ell$)와 glutathione(0.5, 1.0, 1.5mM/$m\ell$)을 첨가하여 배반포로의 배 발달율을 관찰하였던 결과는 다음과 같다. 1. 체외성숙시 catalase의 경우는 500U 첨가군의 27.2%로 무첨가군의 15.4%보다 유의하게 높았다(p<0.05). 한편 glutathione의 경우 배반 포로의 배 발달율은 무첨가군과의 차이는 없었다. 그러나 1.0mM 첨가군에서 상실배까지의 배 발달율인 72%는 무첨가군의 53.9%보다 유의하게 높았다(p<0.05). 2. 체외수정시 여러 종류의 항산화제 첨가는 첨가하는 농도와 관계없이 배반포로의 배 발달율은 무첨가군과 차이가 없었다. 3. 체외배양시 여러 종류의 항산화제 첨가는 첨가하는 농도와 관계없이 배반포로의 배 발달율은 무첨가군과 차이가 없었다. 이상의 결과를 종합적으로 하면 돼지 난포란을 이용한 배반포의 체외생산에 있어서 배양액내 항산화제의 첨가는 체외성숙단계에서만 효과적이었다. 이것은 아마도 항산화제가 체외성숙 시 난포란 내에서 일어나는 여러 가지 생화학 반응의 처리시간과 관련하여 활성화시킴으로써 난포란의 생존력을 높인 것이라고 사료되기 때문에 앞으로는 돼지 난포란의 효율적인 체외성숙에 대해서 배양액내 첨가물질은 물론 나아가서 방법론적인 측면에서 더욱 연구되어져야 할 것이다.

Keywords

References

  1. Abeydeera LR, Wang WH, Cantley TC, Prather RS and Day BN. 1998. Presence of beta-mercapto ethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology, 50:747-756 https://doi.org/10.1016/S0093-691X(98)00180-0
  2. Aitken RJ, Buckingham DW, West K and Brindle J. 1996. On the use of paramagnetic beads and ferrofluids to assess and eliminate the leukocytic contribution to oxygen radical generation by human sperm suspensions. Am. J. Reprod. Immunol., 35:541-551 https://doi.org/10.1111/j.1600-0897.1996.tb00055.x
  3. Aitken RJ, Harkiss D and Buckingham D. 1993. Relationship between iron-catalysed lipid peroxidation potential and human sperm function. J. Reprod. Fertil., 98:257-265 https://doi.org/10.1530/jrf.0.0980257
  4. Ali AA, Bilodeau JF, and Sirard MA. 2003. Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology, 59:939-949 https://doi.org/10.1016/S0093-691X(02)01125-1
  5. Blondin P, Coenen K and Sirard MA. 1997. The impact of reactive oxygen species on bovine sperm fertilizing ability and oocyte maturation. J. Androl., 18:454-460
  6. Byeong-Seon J and Xiangxhong Y. 2001. Cysteine, Glutathione and percoll treatments improve porcine oocyte maturation and fertilization. Mol. Reprod. Dev., 59:330-335 https://doi.org/10.1002/mrd.1038
  7. Caamano JN, Ryoo ZY, Thomas JA and Youngs CR. 1996. Beta-mercaptoethanol enhances blastocyst formation rate of bovine in vitro-matured/ in vitro-fertilized embryos. Biol. Reprod., 55: 1179-1184 https://doi.org/10.1095/biolreprod55.5.1179
  8. Calvin HI, Grosshan K and Blake EJ. 1986. Estimation and manipulation of glutathione levels in prepubertal mouse ovaries and ova: relevance to sperm nucleus transformation in the fertilized egg. Gamete Res., 14:265-275 https://doi.org/10.1002/mrd.1120140310
  9. Comporti M. 1989. Three models of free radical- induced cell injury. Chem. Biol. Interact., 72: 1-56 https://doi.org/10.1016/0009-2797(89)90016-1
  10. Boquest AC, Abeydeera LR, Wang WH and Day BN. 1999. Effect of adding reduced glutathione during insemination on the development of porcine embryos in vitro. Theriogenology, 51: 1311-1319 https://doi.org/10.1016/S0093-691X(99)00075-8
  11. Fowler CJ and Callingham BA. 1978. Substrate- selective activation of rat liver mitochondrial monoamine oxidase by oxygen. Biochem. Pharmacol., 2:1995-2000
  12. Funahashi H, Stumpf TT, Cantely TC, Kin NH and Day BN. 1995. Pronuclear formation and intracelluar glutathione content of in vitro matured porcine oocytes following in vitro fertilization and/or electrical activation. Zygote, 3:273-281 https://doi.org/10.1017/S0967199400002677
  13. Harvey MB, Arcellana-Panlilio MY, Zhang X, Schultz GA and Watson AJ. 1995. Expression of genes encoding antioxidant enzymes in preimplantation mouse and cow embryos and primary bovine oviduct cultures employed for embryo coculture. Biol. Reprod., 53:532-540 https://doi.org/10.1095/biolreprod53.3.532
  14. Johnson MH and Nasr-Esfahani MH. 1994. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays., 16:31-38. Review https://doi.org/10.1002/bies.950160105
  15. Lequarre AS, Feugang JM, Malhomme O, Donnay I, Massip A, Dessy F and VanLangendonckt A. 2001. Expression of Cu/Zn and Mn superoxide dismutases during bovine embryo development: influence of in vitro culture. Mol. Reprod. Dev., 58:45-53 https://doi.org/10.1002/1098-2795(200101)58:1<45::AID-MRD7>3.0.CO;2-J
  16. Lim JM, Liou SS and Hansel W. 1996. Intracytoplasmic glutathione concentration and the role of $\beta$ mercaptoethanol in preimplantation development of bovine embryos. Theriogenology, 46:429-439 https://doi.org/10.1016/0093-691X(96)00165-3
  17. Liu Z and Foote RH. 1995. Effects of amino acids on the development of in-vitro matured/ in- vitro fertilization bovine embryos in a simple protein-free medium. Hum. Reprod., 10:2985- 2991 https://doi.org/10.1093/oxfordjournals.humrep.a135834
  18. Liu Z and Foote RH. 1995. Development of bovine embryos in KSOM with added superoxide dismutase and taurine and with five and twenty percent O2. Biol. Reprod., 53:786-790 https://doi.org/10.1095/biolreprod53.4.786
  19. Luvoni GC, Keskintepe L and Brackett BG. 1996. Improvement in bovine embryo production in vitro by glutathione-containing culture media. Mol. Reprod. Dev., 43:437-443 https://doi.org/10.1002/(SICI)1098-2795(199604)43:4<437::AID-MRD5>3.0.CO;2-Q
  20. Mastrioanni JL and Jones R. 1965. Oxygen tensions in rabbit fallopian tube. J. Reprod. Fertil., 9:99-102 https://doi.org/10.1530/jrf.0.0090099
  21. Matos DG, Furnus CC and Moses DF. 1997. Glutathione synthesis during in vitro maturation of bovine oocytes, role of cumulus cells. Biol. Reprod., 57:1420-1425 https://doi.org/10.1095/biolreprod57.6.1420
  22. Miyamura M, Yoshida M, Hamano S and Kuwayama M. 1995. Glutathione concentration during maturation and fertilization in bovine oocytes. Theriogenology, 43:282 https://doi.org/10.1016/0093-691X(95)92436-D
  23. Nasr-Esfahani MH, Aitken JR and Johnson MH. 1990. Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development, 109:501-507
  24. Nonogaki T, Noda Y, Narimoto K, Umaoka Y and Mori T. 1991. Protection from oxidative stress by thioredoxin and superoxide dismutase of mouse embryos fertilized in vitro. Hum. Reprod., 6:1305-1310 https://doi.org/10.1093/oxfordjournals.humrep.a137532
  25. Nonogaki T, Noda Y, Narimoto K, Umaoka Y and Mori T. 1992. Effects of superoxide dismutase on mouse in vitro fertilization and embryo culture system. J. Assist Reprod. Genet., 9:274- 280 https://doi.org/10.1007/BF01203828
  26. Park CK, Roy F and Sirard MA. 1996. The effect of free radicals and anti-oxidant during in vitro maturation and fertilization of porcine oocytes. Theriogenology, 45: 275 (abstr) https://doi.org/10.1016/0093-691X(96)84748-0
  27. Perreault SD, Barbee RR and Slott VL. 1988. Importance of glutathione in the acquisition and maintenance of sperm nuclear decondensing activity in maturing hamster oocytes. Dev. Biol., 125:181-186 https://doi.org/10.1016/0012-1606(88)90070-X
  28. Yong-Hai L, Wei M, Ming L, Yi H, Li-Hong J and Wei-Hua W. 2003. Reduced polyspermic penetration in porcine oocytes inseminated in a new in vitro fertilization (IVF) system: straw IVF. Biol. Reprod., 69:1580-1585 https://doi.org/10.1095/biolreprod.103.018937
  29. Yoshida M, Ishigaki K, Nagai T and Chikyu M. 1993. Glutathione concentration during maturation and after fertilization in pig oocytes: Relevance to the ability of oocytes to form male pronucleus. Biol. Reprod., 49:89-94 https://doi.org/10.1095/biolreprod48.1.89
  30. Yoshida M. 1993. Role of glutathione in the maturation and fertilization of pig oocytes in vitro. Mol. Reprod. Dev., 35:76-81 https://doi.org/10.1002/mrd.1080350113
  31. 한만희, 이경본, 천행수, 박병권, 이경광, 이규승, 서길웅. 2003. 산소조건 및 catalase 가 돼지 난포란의 체외성숙과 배 발달에 미치는 영향. 한국가축번식학회지, 27(2):115-123