• Title/Summary/Keyword: Condition-Based-Maintenance

Search Result 587, Processing Time 0.026 seconds

Durability design and quality assurance of major concrete infrastructure

  • Gjorv, Odd E.
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.45-63
    • /
    • 2013
  • Upon completion of new concrete structures, the achieved construction quality always shows a high scatter and variability, and in severe environments, any weaknesses and deficiencies will soon be revealed whatever durability specifications and materials have been applied. To a certain extent, a probability approach to the durability design can take the high scatter and variability into account. However, numerical solutions alone are not sufficient to ensure the durability and service life of concrete structures in severe environments. In the present paper, the basis for a probability-based durability design is briefly outlined and discussed. As a result, some performance-based durability requirements are specified which are used for quality control and quality assurance during concrete construction. The final documentation of achieved construction quality and compliance with the specified durability are key to any rational approach to more controlled and increased durability. As part of the durability design, a service manual for future condition assessment and preventive maintenance of the structure is also produced. It is such a service manual which helps provide the ultimate basis for achieving a more controlled durability and service life of the given concrete structure in the given environment.

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.

A Condition Rating Method of Bridges using an Artificial Neural Network Model (인공신경망모델을 이용한 교량의 상태평가)

  • Oh, Soon-Taek;Lee, Dong-Jun;Lee, Jae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.71-77
    • /
    • 2010
  • It is increasing annually that the cost for bridge Maintenance Repair & Rehabilitation (MR&R) in developed countries. Based on Intelligent Technology, Bridge Management System (BMS) is developed for optimization of Life Cycle Cost (LCC) and reliability to predict long-term bridge deteriorations. However, such data are very limited amongst all the known bridge agencies, making it difficult to reliably predict future structural performances. To alleviate this problem, an Artificial Neural Network (ANN) based Backward Prediction Model (BPM) for generating missing historical condition ratings has been developed. Its reliability has been verified using existing condition ratings from the Maryland Department of Transportation, USA. The function of the BPM is to establish the correlations between the known condition ratings and such non-bridge factors as climate and traffic volumes, which can then be used to obtain the bridge condition ratings of the missing years. Since the non-bridge factors used in the BPM can influence the variation of the bridge condition ratings, well-selected non-bridge factors are critical for the BPM to function effectively based on the minimized discrepancy rate between the BPM prediction result and existing data (deck; 6.68%, superstructure; 6.61%, substructure; 7.52%). This research is on the generation of usable historical data using Artificial Intelligence techniques to reliably predict future bridge deterioration. The outcomes (Long-term Bridge deterioration Prediction) will help bridge authorities to effectively plan maintenance strategies for obtaining the maximum benefit with limited funds.

A Study for the Development of Fault Diagnosis Technology Based on Condition Monitoring of Marine Engine (선박 엔진의 상태감시 기반 고장진단 기술 개발에 관한 연구)

  • Park, Jae-Cheul;Jang, Hwa-Sup;Jo, Yeon-Hwa
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.230-231
    • /
    • 2019
  • This study is a development on condition based maintenance(CBM) technology which is a core item of future autonomous ships. It is developing to design & installation of condition monitoring system and acquisition & processing of data from ongoing ships for fault prediction & prognosis of engine in operation. The ultimate goal of this study is to develop a predicts and decision support software for marine engine faults. To do this, the FMEA and fault tree analysis of the main engine should be accompanied by the analysis of classification of system, identification of the components, the type of faults, and the cause and phenomenon of the failure. Finally, the CBM system solution software could predict and diagnose the failure of main engine through integrated analysis for bid-data of ongoing ships and engineering knowledge. Through this study, it is possible to pro-actively cope with abnormal signals of engine and to manage efficiently, and as a result, expected that marine accident and ship operation loss during navigation will be prevented in advance.

  • PDF

A Study on Life Cycle Cost According to Bridge Condition (교량 상태에 따른 생애주기비용 영향 분석)

  • Park, Jun-Yong;Lee, Keesei
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.802-809
    • /
    • 2021
  • To cope with the increasing maintenance costs due to aging, the maintenance cost was evaluated from the perspective of asset management. The maintenance cost can be predicted based on the condition of the bridge, and the life cycle cost is used as an index. In general, the condition of a bridge has a wide distribution characteristic depending on the deterioration, load, and material characteristics. In this paper, to evaluate the effect of the bridge conditions on the life cycle cost, condition prediction models were constructed considering the service life, deterioration rate, and inspection error, which are the main variables of the bridge condition and life cycle cost calculation. In addition, condition prediction models were constructed based on the distribution of the health index to estimate the upper and lower bounds of the life cycle costs that can occur in individual bridges. Life cycle cost analysis showed that the life cycle cost differed significantly according to the condition of the bridge. Accordingly, research will be needed to increase the reliability of predicting the life cycle cost of individual bridges.

A study on the basic test for the development of the wireless sensor monitoring system of the railroad vehicle (철도차량 무선 센서 모니터링 시스템 개발을 위한 기초연구)

  • Kim, Jae-Hoon;Oh, Jae-Geun;Park, Jun-Seo;Kim, Hyung-Jin
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.291-295
    • /
    • 2009
  • We did the blooth module test as a pre-test of wireless sensor monitoring system, which for the improving of on-condition maintenance reliability, on the train. In this test, we examined the communication environment of wireless sensor monitoring system by the acceleration date and frequency date in the real train structure during the operation. Also based on this results, we did the experimental verification of the sensor power system which use piezoelectric energy conversion technology by the theoretical modeling for the applying on the train on-condition maintenance.

  • PDF

A review on prognostics and health management and its applications (건전성예측 및 관리기술 연구동향 및 응용사례)

  • Choi, Joo-ho
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.7-17
    • /
    • 2014
  • Objective of this paper is to introduce a new technology known as prognostics and health management (PHM) which enables a real-time life prediction for safety critical systems under extreme loading conditions. In the PHM, Bayesian framework is employed to account for uncertainties and probabilities arising in the overall process including condition monitoring, fault severity estimation and failure predictions. Three applications - aircraft fuselage crack, gearbox spall and battery capacity degradation are taken to illustrate the approach, in which the life is predicted and validated by end-of-life results. The PHM technology may allow new maintenance strategy that achieves higher degree of safety while reducing the cost in effective manner.

Defect Identification through Frequency Analysis of Vibration -In Case of Rotary Machine_ (진동의 주파수분석을 통한 결함 식별 - 회전기계를 중심으로-)

  • Jeong, Yoon-Seong;Wang, Gi-Nam;Kim, Gwang-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.82-90
    • /
    • 1995
  • This paper pressents a condition-based maintenance (CBM) method through bibration analysis. The well known frequency analysis is employed for performing machine fault diagnosis. The statistical control chart is also applied for analyzing the trend of the bearing wear. Vibration sensors are attached to prototype machine and signals are continuously monitored. The sampled data are utilized to evaluate how well the fast fourier transform(FFT) and the statistical control chart techniques could be used to identify defects of machine and to analyze the machine degradation. Experimental results show that the propowed approach could classify every mal-function and could be utilized for real machine diagnosis system.

  • PDF

A Study of Sensor Reasoning for the CBM+ Application in the Early Design Stage (CBM+ 적용을 위한 설계초기단계 센서선정 추론 연구)

  • Shin, Baek Cheon;Hur, Jang Wook
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.1
    • /
    • pp.84-89
    • /
    • 2022
  • For system maintenance optimization, it is necessary to establish a state information system by CBM+ including CBM and RCM, and sensor selection for CBM+ application requires system process for function model analysis at the early design stage. The study investigated the contents of CBM and CBM+, analyzed the function analysis tasks and procedures of the system, and thus presented a D-FMEA based sensor selection inference methodology at the early stage of design for CBM+ application, and established it as a D-FMEA based sensor selection inference process. The D-FMEA-based sensor inference methodology and procedure in the early design stage were presented for diesel engine sub assembly.

Systems Engineering approach to Reliability Centered Maintenance of Containment Spray Pump (시스템즈 엔지니어링 기법을 이용한 격납용기 살수펌프의 신뢰기반 정비기법 도입 연구)

  • Ohaga, Eric Owino;Lee, Yong-Kwan;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.65-84
    • /
    • 2013
  • This paper introduces a systems engineering approach to reliability centered maintenance to address some of the weaknesses. Reliability centered maintenance is a systematic, disciplined process that produces an efficient equipment management strategy to reduce the probability of failure [1]. The study identifies the need for RCM, requirements analysis, design for RCM implementation. Value modeling is used to evaluate the value measures of RCM. The system boundary for the study has been selected as containment spray pump and its motor drive. Failure Mode and Criticality Effects analysis is applied to evaluate the failure modes while the logic tree diagram used to determine the optimum maintenance strategy. It is concluded that condition based maintenance tasks should be enhanced to reduce component degradation and thus improve reliability and availability of the component. It is recommended to apply time directed tasks to age related failures and failure finding tasks to hidden failures.