• Title/Summary/Keyword: Condenser Fin

Search Result 75, Processing Time 0.02 seconds

Design Study of a Brazed Plate Heat Exchanger Condenser Through Two-Phase Flow Analysis (이상유동 해석을 통한 브레이징 판형 응축기 설계 연구)

  • Hwang, Dae-jung;Oh, Cheol;Park, Sang-kyun;Jee, Jae-hoon;Bang, Eun-shin;Lee, Byeong-gil
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.73-81
    • /
    • 2022
  • This study was aimed at designing a condenser, as a component of the organic Rankine cycle system for ships. The condenser was manufactured through press molding to achieve a bent shape to enhance the heat transfer performance, considering the shape of the heat transfer plate used in a brazing plate heat exchanger. The heat transfer plate was made of copper-nickel alloy. The required heat transfer rate for the condenser was 110 kW, and the maximum number of layers was set as 25, considering the characteristics of high-temperature brazing. Computational fluid dynamics techniques were used to perform the thermal fluid analysis, based on the ANSYS CFX (v.18.1) commercial program. The heat transfer rate of the condenser was 4.96 kW for one layer (width and length of 0.224 and 0.7 m, respectively) of the heat transfer exchanger. The fin efficiency pertaining to the heat transfer plate was approximately 20%. The heat flow analysis for one layer of the heat exchanger plate indicated that the condenser with 25 layers of heat transfer plates could achieve a heat transfer rate of 110 kW.

The Friction Characteristics of Roll Stand in the Cooling Slat Fin M/C (쿨링용 슬레트 핀 M/C Form Roll의 Roll Stand부 마찰 특성)

  • Choi, Won-Sik;Lee, Sung-Yong;Kwon, Ju-Ry;Jin, Eun-Young;Mun, Hee-Joon;Lee, In
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.52-55
    • /
    • 2010
  • This study investigates the friction of the roll stands in the high performance multi- holes slate fin machine which pin is using in heat transfer of radiator, oil cooler, inter cooler, condenser and evaporator. The roll stand part is very important to maintain the high performance fin machine. This multi-holes form roll type is the first time in our country so it will be helpful to increases the export and product of heat transfer. It was include the technical of form rolling system which was self development. Then it will be improve the electric home appliances, future motor vehicle device and industrial machine.

A Study on the Condensation Heat Transfer and Pressure Drop in Internally Grooved Tubes Used in Condenser (응축기용 낮은 핀관의 내부 나선 홈에 의한 응축 열전달 성능과 압력손실에 관한 연구)

  • Han, Kyuil;Cho, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.212-222
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

Properties of Aluminum Clad Sheets for Condenser Fins Fabricated with Transition Elements(Cu, Cr) added to Al-1.4Mn-1.0Zn Base Alloys (Cu, Cr 등 천이원소가 첨가된 Al-1.4Mn-1.0Zn 합금을 심재로 하여 제조된 콘덴서 핀용 알루미늄 클래드 박판의 특성)

  • Euh, K.;Kim, H.W.;Lee, Y.S.;Oh, Y.M.;Kim, D.B.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.386-391
    • /
    • 2014
  • In the current study, Al-Mn-Zn alloys are strip-cast and used as the base alloy for the core of aluminum clad sheets used in automotive condenser fins. Transition elements such as Cu and Cr are added to the base core alloy in order to improve the properties of the clad sheets. The AA4343/Al-Mn-Zn-X(X: Cu, Cr)/AA4343 clad sheets are fabricated by roll bonding and further cold-rolled to a thickness of 0.08 mm. Clad sheets were intermediately annealed during cold rolling at $450^{\circ}C$ in order to obtain 40% reduction at the final thickness. Tensile strength and sag resistance of the clad sheets are improved by Cu additions to the core alloy, while corrosion resistance is also increased. Cr-additions to the clad sheets enhance sag resistance and provide low enough corrosion, although tensile strength is not improved. The effect of Cu and Cr additions on the properties of the clad sheets is elucidated by microstructural analysis.

A Numerical Study on the Performance Characteristics of a Power Plant Air-Cooled Condenser (ACC) Affected by Changes in Operating Conditions (발전소용 공랭식 응축기(ACC)의 작동조건 변화에 따른 성능특성에 대한 수치적 연구)

  • Park, Kyung-Min;Ju, Kihong;Park, Chang Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.243-250
    • /
    • 2017
  • A numerical study was conducted to calculate the cooling capacity variation of a power plant ACC (air-cooled condenser) caused by changes in operating conditions. A numerical model was developed using the ${\varepsilon}-NTU$ and finite volume method, containing 100 elements for a single low fin tube. The model was validated through a comparison of cooling capacity between the simulated values and manufacturer's data. Even though simple assumptions and previously presented heat transfer correlations were applied to the model, the prediction error was 1.9%. The simulated variables of the operating conditions were air velocity, air temperature, and mass flux. The analysis on the variation of thermal resistance along the tube showed that the water side thermal resistance was higher than the air side thermal resistance at the downstream end of the tube, indicating that the ACC capacity could be increased by applying technology to enhance in-tube flow condensation heat transfer.

Effects of Baffle Location on the Performance of a Super Compact Condenser in an Automotive Air Conditioning System (자동차용 에어컨의 고밀도 응축기(SCC)에서 배플의 위치 변화에 따른 성능향상에 관한 연구)

  • 이명재;박복춘;백병준;염동석;한창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.128-140
    • /
    • 1997
  • A new super compact condenser(SCC), which has been developed recently is especially suitable for an alternative refrigerant HFC-134a due to its high performance and compactness. The SCC is composed of two pipe headers, baffles, narrow multi-rectangular channels, and louvered fin arrays. Alternating inlet and outlet by the inserted baffles in pipe headers guide refrigerant to and from the narrow multi-rectangular channels. Since the flow rate and its lengh are changed depending on the number and location of baffles, the corresponding pressure drop and heat transfer rate are changed. The present study aims to theoretically and experimentally investigate the effects of baffle location and its number on the pressure drop and thermal performance of the SCC with 40 multi-rectangular channels. The results show that the present method provides an acceptable prediction of pressure drop and heat transfer rate for a 4 pass SCC. However, the model significantly under predicts the performance of a 3 pass SCC, which may be attributed to the phase separation of refrigerant flowing through header pipes. Pressure drop is more signifi- cantly influenced than heat transfer rate by the baffle location.

  • PDF

Prediction and Experiment of Pressure Drop of R22 and R134a on Design Conditions of Condenser (응축기의 설계조건에서 R22와 R134a의 압력강하 예측 및 실험)

  • Kang, Shin-Hyung;Byun, Ju-Suk;Kim, Chang-Duk
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.243-249
    • /
    • 2006
  • An experimental study on the refrigerant-side pressure drop of slit fin an tube heat exchanger has been carried out. A comparison was made between the predictions of previously proposed empirical correlations and experimental data for the pressure drop on design conditions of condenser in micro-fin tube for R22 and Rl34a. Experiments were carried out under the conditions of inlet refrigerant temperature of $60^{\circ}C$ and mass fluxes varying from $150\;to\;250\;kg/m^{2}s$ for R22 and Rl34a. The inlet air conditions are dry bulb temperature of $35^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.43 m/s. Experiments show that pressure drop for R134a was $22{\sim}22.6%$ higher than R22 for the degree of subcooling $5^{\circ}C$ For the mass fluxes of $200{\sim}250\;kg/m^{2}s$, the deviation between the experimental and predicted values for the pressure drop was less than ${\pm}20%$ for R22 and Rl34a.

A Study on Performance Characteristics of Heat Exchanger for Heat Pump with R410A Refrigerant (R410A 냉매를 사용한 열펌프용 열교환기의 형상에 따른 성능특성 연구)

  • 정규하;박윤철;오상경
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.340-348
    • /
    • 2004
  • The air and refrigerant side heat transfer performances are key parameters to improve heat transfer efficiency of the heat exchanger including the fan performance. Design of the fins, treatment of the tube inside, tube diameter and tube array effect heat transfer performance of the heat exchanger. The heat exchanger is used as a condenser at cooling mode and used as an evaporator at heating mode in the heat pump system. The heat pump system uses R410A as the refrigerant. The heat exchangers are consisted with 7 mm diameter tubes with slit-type fins. The study was conducted with variation of arrangement of the refrigerant path and air flow rate and refrigerant pressure drop and heat transfer rate were measured with a code tester. The capacity of the 3 path heat exchanger is more efficient than 2 or 4 path heat exchangers in heating or cooling modes.

Investigation of Cooling Performance of the Driving Motor Utilizing Heat Pipe (히트파이프를 부착한 구동모터의 냉각성능에 관한 연구)

  • Lee, Dong-Ryul
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.11-16
    • /
    • 2006
  • This research is to verify the cooling effect of the acting surface on the rotary motor using heat pipe and conventional cooling fan. In order to show the cooling performance of the rotary motor and heat pipe with the fin-typed heat sink, the surface temperature of the motor and condenser was measured in real time. The experiments were also conducted as for not only cooling device installed with heat pipe only, but with heat pipe and conventional cooling fan simultaneously. The present experiment reveals that the cooling combination of the heat pipe and cooling fan is far superior to the conventional cooling device for the driving motor such as the fin-typed heat sink. When the driving voltage of 20V and 14V were supplied to the driving motor, the cooling performance of the rotary motor with heat pipe was 170% and 500%, respectively better than that without heat pipe on steady state condition.

  • PDF

The Performance Analysis of the Fin-Tube Heat Exchanger Using CFC Alternative Refrigerant (CFC 대체냉매를 사용한 핀-관 열교환기의 성능해석)

  • 박희용;박경우;차재병
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2358-2372
    • /
    • 1993
  • In this study, the computer modeling for prediction of the performance of fin-tube heat exchanger using alternative refrigerant, HFC-134a was developed and the computer program for calculating the various properties of HFC-134a and the existing refrigerant CFC-12 and HCFC-22 was made. The heat exchanger modeling is based on a tube-by-tube approach, which is capable of analysis for the complex coil array. Performance of each tube is analyzed separately by considering the cross-flow heat transfer with external airstream and the appropriate heat and mass transfer relationships. A performance comparison according to the different refrigerants is provided using this developed model. As the result of this study, total heat transfer rate of evaporator and condenser using HFC-134a were found higher than that of using CFC-12 for the same operating conditions. When the mass flow rate of HFC-134a was less than CFC-12 about 18. 16%, the cooling capacities of evaporator were found to be the same.