• 제목/요약/키워드: Concrete-filled tube (CFT)

검색결과 218건 처리시간 0.029초

Seismic Performance of In- Filled Steel-Concrete Composite Columns Using Fiber Analysis Method

  • Park, Jae-Young;Kim, Jin-Ho
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.427-430
    • /
    • 2005
  • The study for seismic characteristics of square concrete-filled steel tubular (CFT) columns is analytically conducted. For predicting the strength and ductility of CFT columns, fiber analysis technique is used. The analytical results show reasonable agreement with experiment results. The influence of the steel tube on the lateral response of CFT columns is studied for the evaluation of seismic performance.

  • PDF

Behavior of Hybrid Double Skin Concrete Filled Circular Steel Tube Columns

  • Kim, Jin-Kook;Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Steel and Composite Structures
    • /
    • 제14권2호
    • /
    • pp.191-204
    • /
    • 2013
  • A hybrid double skin concrete filled (HDSCF) circular steel tube column is proposed in this study. The yield strength of the outer steel tube is larger than 690MPa and the inner tube has less strength. In order to achieve efficiency with the high strength outer tube, a feasibility study on reducing the thickness of the tube below the specified design codes for CFTs was conducted based on an experimental approach. The experiment also took variables such as thickness of the inner tube, hollow ratio, and strength of concrete into consideration to investigate the behavior of the HDSCF column. In order to estimate the applicability of design equations for CFTs to the HDSCF column, test results from CFT and HDSCF columns with design codes were compared. It was found that the axial compressive performance of the proposed HDSCF column is equivalent to that of the conventional CFT member irrespective of design variables. Furthermore, the design equation for a circular CFT given by EC4 is applicable to estimate the ultimate strength of the HDSCF circular steel tube column.

강관의 크기, 축력비 및 콘크리트 압축강도 변화에 따른 CFT 기둥부재의 내화성능에 관한 실험적 연구 (Experimental Study on Fire Resistance Performance of CFT (Concrete filled Tube) Column according to Cross Section of Steel, Concrete Compressive Strengths and Load Ratios)

  • 조경숙;김흥열;김형준;민병렬;권인규
    • 한국화재소방학회논문지
    • /
    • 제24권6호
    • /
    • pp.104-111
    • /
    • 2010
  • CFT기둥은 강관내부에 콘크리트를 채워 넣은 구조로서, 화재 시 강관의 강도는 저하되나 내부 콘크리트의 높은 열용량 효과로 내화성능을 확보할 수 있는 구조이다. 본 연구에서는 강관내부의 충전된 콘크리트의 압축강도 및 축력비 변화에 따른 CFT기둥의 내화성능을 평가하였다. 내화성능의 평가는 KS F 2257-1 및 KS F 2257-7에 따라 수행되었으며, 적용 부재 단면은 $280{\times}280{\times}6$, 콘크리트 압축강도 24MPa, 40MPa 및 축력비 0.9, 0.6, 0.2를 실험변수로 설정하였다. 재하가열시험을 통한 내화성능평가 결과, 콘크리트 압축강도 24Mpa의 경우 축력비 0.9, 0.6, 0.2에서는 각각 27분, 113분, 3시간 이상으로 나타나 축력비 변화에 따른 내화성능이 크게 변화하는 것으로 나타났다. 콘크리트 압축강도 40MPa의 경우, 축력비 0.9, 0.6에서는 각각 19분, 28분으로 나타났다. 40MPa는 24MPa에 비해서 축력비 변화에 따른 내화성능 향상 효과는 크지 않은 것으로 나타났다. 이는 고강도의 경우 가열시 발생되는 내부 압력의 상승로 성능저하가 크게 발생되는 것으로 판단되었다.

일정축력과 반복 수평력을 받는 콘크리트충전 각형강관 기둥의 변형성능 평가 (Evaluation on Deformation Capacity of CFT Square Columns subject to Constant Axial and Cyclic Lateral Loads)

  • 지구현;최성모;김동규
    • 한국강구조학회 논문집
    • /
    • 제12권2호통권45호
    • /
    • pp.209-219
    • /
    • 2000
  • 콘크리트충전 강관구조는 합성효과에 의해 강관과 콘크리트의 단점을 상호보완하여 역학적으로 우수한 성능을 발휘할 수 있다. 그래서, 최근에는 초고층구조물시스템의 하나로 주목을 받고 있다. 본 연구의 목적은 일정축력과 반복 수평력을 받는 콘크리트 충전 각형강관기둥의 내력 및 변형성능을 평가하는 것이다. 이 실험의 변수로는 강관의 폭 두께비, 축력비, 콘크리트 강도, 하중가력방법과 콘크리트의 충전유무로 정하여 총 16개의 실험체를 제작하여 실험하였다. 실험결과로부터 실험체의 최대내력, 초기강성 및 변형성능에 대해 검토하였다.

  • PDF

Ultimate compressive strength predictions of CFT considering the nonlinear Poisson effect

  • Yu-A Kim;Ju-young Hwang;Jin-Kook Kim
    • Steel and Composite Structures
    • /
    • 제48권4호
    • /
    • pp.461-474
    • /
    • 2023
  • Concrete-filled steel tubes are among the most efficient compressive structural members because the strength of the concrete is enhanced given that the surrounding steel tube confines the concrete laterally and the steel tube is restrained with regard to inward deformation due to the concrete existing inside. Accurate estimations of the ultimate compressive strength of CFT are important for efficient designs of CFT members. In this study, an analytical procedure that directly formulates the interaction between the concrete and steel tube by considering the nonlinear Poisson effect and stress-strain curve of the concrete including the confinement effect is proposed. The failure stress of concrete and von-Mises failure yield criterion of steel were used to consider multi-dimensional stresses. To verify the prediction capabilities of the proposed analytical procedure, 99 circular CFT experimental data instances from other studies were used for a comparison with AISC, Eurocode 4, and other researchers' predictions. From the comparison, it was revealed that the proposed procedure more accurately predicted the ultimate compressive strength of a circular CFT regardless of the range of the design variables, in this case the concrete compressive strength, yield strength of the steel tube and diameter relative to the thickness ratio of the tube.

The behavior of lightweight aggregate concrete filled steel tube columns under eccentric loading

  • Elzien, Abdelgadir;Ji, Bohai;Fu, Zhongqiu;Hu, Zhengqing
    • Steel and Composite Structures
    • /
    • 제11권6호
    • /
    • pp.469-488
    • /
    • 2011
  • This paper consists of two parts; the first part describes the laboratory work concerning the behavior of lightweight aggregate concrete filled steel tubes (LACFT). Based on eccentricity tests, fifty-four specimens with different slenderness ratios (L/D= 3, 7, and 14) were tested. The main parameters varied in the test are: load eccentricity; steel ratio; and slenderness ratio. The standard load-strain curves of LACFT columns under eccentric loading were summarized and significant parameters affecting LACFT column's bearing capacity, failure mechanism and failure mode such as confinement effect and bond strength were all studied and analyzed through the comparison with predicted strength of concrete filled steel tube columns (CFT) using the existing codes such as AISC-LRFD (1999), CHN DBJ 13-51-2003 (2003) and CHN CECS 28:90 (1990). The second part of this paper presents the results of parametric study and introduces a practical and accurate method for determination of the maximum compressive strength of confined concrete core ($f_{max}$), In addition to, the study of the effect of aspect-ratio and length-width ratio on the yield stress of steel tubes ( $f_{sy}$) under biaxial state of stress in CFT columns and the effect of these two factors on the ultimate load carrying capacity of axially loaded CFT/LACFT columns.

강관내부 보강재를 고려한 용접조립 각형 CFT 편심 장주의 내력 및 휨 거동 (Resistance and Flexure Behavior of Slender Welded Built-up Square CFT Column Using Internal Reinforced Steel Tube under Eccentric Loads)

  • 이성희;김영호;최성모
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.32-39
    • /
    • 2015
  • So far, square concrete filled tubular(CFT) columns have been used in a limited width thickness ratio. The reason is that local buckling occurs in steel tube easily. Once the local buckling occurs, the confinement effect of steel tube on concrete disappears. In this study, we developed welded built-up square steel tube with reinforcement which are placed at the center of the tube width acts as an anchor. 3 specimens of slender welded built-up square CFT columns and 3 specimens of slender welded built-up square steel tube columns were manufactured with parameters of width(B) of steel tube, width thickness ratio(B/t). we conducted a experimental test on the 6 specimens under eccentric load, and evaluated the structural resistance and behavior of 6 specimens.

콘크리트 충전 강관 거더-바닥판 합성단면의 휨거동에 관한 실험적 연구 (Experimental Study on Flexural Behavior of CFT Girder-Deck Composite Section)

  • 진원종;강재윤;최은석;이정우;이흥수;곽종원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.166-169
    • /
    • 2006
  • A new bridge system described in this paper uses concrete-filled steel tube (CFT) girders as a replacement for conventional girders. Experimental investigations were carried out to comprehend the flexural behavior of CFT girder-slab deck composite section. The experimental investigation consisted of designing and constructing a test specimen and loading it to collapse in bending to check the applicability of the system. The test results showed that concrete filled steel tube girders have good ductility and maintain its strength up to the end of the loading. In the test, the flexural behavior of each specimen of CFT girder-deck composite section is identified.

  • PDF

Study on push-out test and bond stress-slip relationship of circular concrete filled steel tube

  • Yin, Xiaowei;Lu, Xilin
    • Steel and Composite Structures
    • /
    • 제10권4호
    • /
    • pp.317-329
    • /
    • 2010
  • According to the results of 9 circular concrete filled steel tube (CFT) push-out tests, a new theoretical model for average bond stress versus free end slip curve is proposed. The relationship between verage bond stress and free end slip is obtained considering some varying influential parameters such as slenderness ratio and diameter-to-thickness ratio. Based on measured steel tube strain and relative slip at different longitudinal positions, the distribution of bond stress and relative slip along the length of steel tube is obtained. An equation for predicting the varying bond-slip relationship along longitudinal length and a position function reflecting the variation are proposed. The presented method can be used in the application of finite element method to analyze the behavior of CFT structures.

Behavior of gusset plate-T0-CCFT connections with different configurations

  • Hassan, M.M.;Ramadan, H.M.;Naeem, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.735-751
    • /
    • 2014
  • Concrete-filled steel tube (CFT) composite columns, either circular (CCFT) or rectangular (RCFT), have many economical and aesthetic advantages but the behavior of their connections are complicated. This study aims to investigate, through an experimental program, the performance and behavior of different connections configurations between circular concrete filled steel tube columns (CCFT) and gusset plates subjected to shear and axial compression loadings. The study included seventeen connection subassemblies consisting of a fixed length steel tube and gusset plate connected to the tube end with different details tested under half cyclic loading. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution.