Browse > Article

Experimental Study on Fire Resistance Performance of CFT (Concrete filled Tube) Column according to Cross Section of Steel, Concrete Compressive Strengths and Load Ratios  

Cho, Kyung-Suk (한국건설기술연구원)
Kim, Heung-Youl (한국건설기술연구원)
Kim, Hyung-Jun (한국건설기술연구원)
Min, Byung-Yeol (한국건설기술연구원)
Kwon, In-Kyu (강원대학교)
Publication Information
Fire Science and Engineering / v.24, no.6, 2010 , pp. 104-111 More about this Journal
Abstract
The strength of steel in a concrete filled steel tube (CFT) is reduced in a fire, but the concrete filled structurally ensures the fire resistance due to its high thermal capacity. This research analyzed the fire resistance performance due to the variances of concrete strength filled inside of steel tube and the load ratios, which can influence on the fire resistance of CFT. As $280{\times}280{\times}6$ CFT columns with the concrete strengths of 24 MPa and 40 MPa and the axial load ratios of 0.9, 0.6, and 0.2 in accordance with KS F 2257-1 and 7 were heated with loading to examine the fire resistance performance, the fire resistance used to 24 MPa concrete showed 27, 113, and 180 minutes according to the axial load ratios, 0.9, 0.6, and 0.2 respectively. In case of 40 MPa concrete, the fire resistance were turned out to be 19 and 28 minutes for the axial load ratios, 0.9 and 0.6 respectively. The results of fire resistance with 40 MPa concrete showed the much lower fire resistance performance than those of 24 MPa concrete. In case of 40 MPa, the fire resistance performance was not increased significantly according to the axial load ratio than that of 24 MPa. The main reason why the higher concrete strength showed lower fire resistance than that of lower guessed the internal stress had the concrete strength weak.
Keywords
Concrete Filled Tube column; Fire resistance; Load ratio;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 V.K.R. Kodur, Achieving fire resistance through steel-concrete composite consruction, ASCE(2005).
2 Gabriel Alexander Khoury, Effect of fire on concrete and concrete structure, Imperial College, London, UK(2000).
3 V.K.R. Kodur and D.H. Mackinnon, Design of Concrete-filled Hollow Structural Steel column for fire endurance, NRC (2000).
4 최성모, 최영한, 정경수, "CFT 구조기술 개발 및 적용사례", 대한건축학회지, Vol.50 No.12, pp.28-33 (2006).
5 김흥열, 고온 영역에서 고강도 콘크리트의 역학적 특성에 관한 실험적 연구, 건국대학교(2002).
6 조경숙, 김흥열, 김형준, 권인규, "콘크리트 압축강도 및 하중비에 따른 CFT 기둥의 내화성능에 관한 연구", 한국화재소방학회 논문지, Vol.24, No.2, pp.44-51 (2010).   과학기술학회마을
7 일본 신도시하우징협회, CFT 구조의 내화설계지침 (2004).
8 김규용, 김영선, 이태규, 강선종, 김무한, "고강도콘크리트를 충전한 CFT 기둥의 내화성능 평가에 관한 실험적 연구", 대한건축학회논문집(구조계), Vol.24, No.8, pp.147-154(2008).
9 김흥열, 서치호, 신현준, "고온 영역에서 강도영역별 콘크리트의 역학적 특성에 관한 실험적 연구", 대한 건축학회 논문집(구조계), Vol.21, No.7, pp.55-66(2005).
10 박수희, 송경철, 정경수, 김흥열, 원용안, 최성모, "콘크리트충전 강관기둥의 내화성능에 대한 구성재료(강재, 콘크리트)의 고온특성 영향", 대한건축학회 학술발표대회 논문집, Vol.28, No.1, pp.325-328(2008).
11 박수희, 류재용, 정경수, 최성모, "일정 축력을 받는 콘크리트충전 각형 강관기둥의 내화성능 평가", 한국 강구조학회 논문집, Vol.19, No.6, pp.703-714(2007).
12 V.K.R. Kodur, Performance-based fire resistance design of concret-filled steel columns, Journal of constructional steel research(1998).
13 Lin-Hai Han, et al, Experimental study and calculation of fire resistance of concrete-filled hollow steel columns, Journal of structural engineering (2003).
14 International Tunneling Association, Guidelines for structural fire resistance for road tunnels(2004).
15 서울시립대학교, 콘크리트 충전강관(CFT)구조의 내화성능 설계기술 개발, 건설기술혁신사업(2009).