• Title/Summary/Keyword: Concrete road pavement

Search Result 505, Processing Time 0.024 seconds

A Study on Joint Position at Concrete Pavement with Box Culverts (박스 암거가 통과하는 콘크리트 포장의 줄눈 위치에 관한 연구)

  • Park, Joo-Young;Sohn, Dueck-Su;Lee, Jae-Hoon;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.45-53
    • /
    • 2012
  • Hollows are easily made and bearing capacity is lowered near underground structures of concrete pavement because of poor compaction and long term settlement of the ground. Distresses occur and lifespan is shortened because of larger stress induced by external loadings expected than that in the design. In this paper, the distresses of the concrete pavement slab over box culverts were investigated at the Korea Expressway Corporation(KEC) test road. The transverse cracking of the slabs over the culverts was compared between up and down lines with different soil cover depth. The box culvert without soil cover and concrete pavement were modeled and analyzed by the finite element method(FEM) to verify the transverse cracking at the test road. Wheel loading was applied after self weight of the pavement and temperature gradient of the concrete slab at Yeojoo, Gyeonggi where the test road is located were considered. Positions of maximum tensile stress and corresponding positions of the wheel loading were found for each loading combination. Joint position minimizing the maximum tensile stress was found and optimal slab length over the culverts with diverse size were suggested.

Analysis of CO2 Emission and Economic of Rural Roads Concrete Pavement Using Air Cooled Slag Aggregate (괴재슬래그 골재를 적용한 농촌도로 포장 콘크리트의 CO2 배출량 및 경제성 분석)

  • Ahn, Byong Hwan;Kim, Hwang-Hee;Lee, Jae-Young;Cha, Sang-Sun;Lee, Goen Hee;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.25-34
    • /
    • 2022
  • Recently, as a study to air cooled slag, which is an industrial by-product, research is being proceed to use it as a material for concrete. In this study, the workability, air content, compressive strength, CO2 emission and economic feasibility of concrete were analyzed when air cooled slag, an industrial by-product, was applied as aggregate for rural road pavement concrete. As a result of the analysis, both the slump and air contents test results of concrete using the air cooled slag aggregate satisfied the target values, and the compressive strength was increased when the air cooled slag aggregate was used compared to when the natural aggregate was applied. On the other hand, the largest amount of CO2 emission by raw material was found in aggregate. The carbon emission of rural road pavement concrete using air cooled slag aggregate increased when the Korean LCI DB was applied compared to when natural and crushed aggregates were applied, and the emission decreased when the German LCI DB was applied. This results are due to differences in the viewpoints of industrial by-products. However, considering the recycling of waste from the environmental aspect, it is necessary to simultaneously review the CO2 emission and recycling aspects in the future. Also, the application of air cooled slag aggregate had the effect of improving the economic efficiency of rural road pavement concrete about 18.75%.

Behavior of Jointed Concrete Pavement by Box Culvert and Reinforced Slab (박스형 암거와 보강슬래브에 의한 줄눈 콘크리트 포장의 거동)

  • Park, Joo Young;Sohn, Dueck Su;Lee, Jae Hoon;Yan, Yu;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.25-35
    • /
    • 2012
  • PURPOSES : Hollows are easily made, and bearing capacity can be lowered near underground structures because sublayers of pavement settle for a long time due to difficult compaction at the position. If loadings are applied in this condition, distresses may occur in pavement and, as the result, its lifespan can decrease due to the stress larger than that expected in design phase. Although reinforced slab is installed on side of box culvert to minimize the distresses, length of the reinforced slab is fixed as 6m in Korea without any theoretical consideration. The purpose of this paper is investigating the behavior of concrete pavement according to the cover depth of the box culvert ad the length of the reinforced slab. METHODS : The distresses of concrete pavement slabs were investigated and cover depth was surveyed at position where the box culverts were located in expressways. The concrete pavements including the box culverts were modeled by finite element method and their behaviors according to the soil cover depth were analyzed. Wheel loading was applied after considering self weight of the pavement and temperature gradient of the concrete pavement slab at Yeojoo, Gyeonggi where a test road was located. After installing pavement joint at various positions, behavior of the pavement was analyzed by changing the soil cover depth and length of the reinforced slab. RESULTS : As the result, the tensile stress developed in the pavement slab according to the joint position, cover depth, and reinforced slab length was figured out. CONCLUSIONS : More reasonable and economic design of the concrete pavement including the box culvert is expected by the research results.

Study on temperature characteristics in depth of concrete pavement for development of prediction method of road surface freezing (노면결빙 예측기법 개발을 위한 콘크리트 포장의 깊이별 온도특성 연구)

  • Kim, Jong-Woo;Kim, Ho-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.391-392
    • /
    • 2010
  • The frozen road is effected as major cause of car accident in winter. Especially, road surface freezing on the highway can lead to fatal accident. The accident by frozen road can effectively reduced by prevent road surface freezing before it frozen as evaluate road surface condition. Therefore, this study installed thermometer in each depth of concrete pavement for evaluate road surface conditions which freezing chronically. The result of this study will be used as preliminary data for predict before freezing.

  • PDF

A vision-based system for inspection of expansion joints in concrete pavement

  • Jung Hee Lee ;bragimov Eldor ;Heungbae Gil ;Jong-Jae Lee
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.309-318
    • /
    • 2023
  • The appropriate maintenance of highway roads is critical for the safe operation of road networks and conserves maintenance costs. Multiple methods have been developed to investigate the surface of roads for various types of cracks and potholes, among other damage. Like road surface damage, the condition of expansion joints in concrete pavement is important to avoid unexpected hazardous situations. Thus, in this study, a new system is proposed for autonomous expansion joint monitoring using a vision-based system. The system consists of the following three key parts: (1) a camera-mounted vehicle, (2) indication marks on the expansion joints, and (3) a deep learning-based automatic evaluation algorithm. With paired marks indicating the expansion joints in a concrete pavement, they can be automatically detected. An inspection vehicle is equipped with an action camera that acquires images of the expansion joints in the road. You Only Look Once (YOLO) automatically detects the expansion joints with indication marks, which has a performance accuracy of 95%. The width of the detected expansion joint is calculated using an image processing algorithm. Based on the calculated width, the expansion joint is classified into the following two types: normal and dangerous. The obtained results demonstrate that the proposed system is very efficient in terms of speed and accuracy.

Performance Evaluation of Exposed Aggregate Texturing in Concrete Pavement Based on In-Situ Noise Measurements

  • Moon, Han-Young;Ha, Sang-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.504-511
    • /
    • 2003
  • Environmental noise at high intensities directly affects human health by causing hearing loss. Although scientific evidence currently is not conclusive, noise is suspected of causing or aggravating other diseases. Environmental noise indirectly affects human welfare by interfering with sleep, thought, and conversation. Noise emission from motorized vehicle includes power unit noise, tire/pavement noise and aerodynamic noise. Among them, tire/pavement noise is noise emission from interaction of the tire and road surface when the vehicle cruises over the surface of pavement. In general, portland cement concrete(PCC) pavement is known to create more noise than asphaltic surfaces though it has the advantage of durability and superior surface friction. However, the results of preliminary laboratory test showed exposed aggregate concrete(EAC) has and effect on reducing tire/pavement noise. Based on the laboratory test. pilot construction of exposed aggregate concrete pavement was completed and series of in-situ measurements were conducted for noise analysis including the pass-by noise measurement and the close-proximity method. Conclusively, it is expected that tire/pavement noise represent significant portion of noise levels at higher frequencies and it would be reduced on special textures of pavement such as exposed aggregate concrete.

Evaluation of Surface Temperature Variation and Heat Exchange Rate of Concrete Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 콘크리트 도로 포장체의 표면 온도 변화와 방열량 평가)

  • Byonghu Sohn;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have been well established and documented to provide road safety in winter season over the past two decades. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their performance. The aim of this study is to investigate the thermal performance of the concrete HHP systems, including surface temperature variations of experimental pavements in winter season. For preliminary study a small-scale experimental system was installed to evaluate the heat transfer characteristics of the concrete HHP in the test field. The system consists of 3 concrete slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In these slabs, circulating water piping was embedded with different pipe depths of 0.08 m (Case A), 0.12 m (Case B), and 0.20 m (Case C) and same horizontal space of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. Overall, the surface temperature of the concrete HHPs remained above 3℃ in all experimental conditions applied in this study. The results of the surface temperature measurement with respect to the pipe depth showed that Case B was the highest among the three cases. However, the closer the circulating water pipe was to the pavement surface, the greater the heat exchange rate. This results is considered that the heat is continuously accumulated inside the pavements and then the temperature inside the pavements increases, while the amount of heat dissipation decreases as the temperature difference between the inlet and outlet of circulating water decreases. In this preliminary test the applicability of the concrete HHP on road deicing was confirmed. Finally, the results can be used as a basis for studying the effects of various variables on road pavements through numerical analysis and for conducting large-scale empirical experiments.

Evaluation of the Noise Emission in Low Noise Concrete Pavements (저소음용 콘크리트 포장의 소음평가)

  • 문한영;하상욱;양은철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.483-488
    • /
    • 2002
  • Noise has become an environmental pollution that affects most peoples' health, comfort or general well being. there are many sources of noise, but one of them clearly dominates road traffic noise. It has traditionally been associated with engine and exhaust noise of vehicles. However the emission and propagation of noise from these sources were partly reduced, while at the same time the noise emission from the tire/road interaction on a relative scale became more and more prominent Generally, Portland cement concrete(PCC) pavements have the advantage of durability and superior surface friction when compared to most dense-graded asphalt. However, It is known that PCC pavements create more noise than asphaltic surfaces due to the noise from interaction of tire and pavement surface. Therefore, recent research has shown some new concrete pavement textures to be worth further examination. So in this paper, we considered the 9 types of low noise concrete pavements to evaluate tire/pavement noise.

  • PDF

Electrical signal characteristics of conductive asphalt concrete in the process of fatigue cracking

  • Yang, Qun;Li, Xu;Wang, Ping;Zhang, Hong-Wei
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.469-477
    • /
    • 2014
  • As a kind of intelligent materials, conductive asphalt concrete has a broad application prospect including melting ice and snow on the pavement, closing cracks in asphalt concrete, sensing pavement damage, and so on. Conductive pavement will be suffered from fatigue failure as conventional pavement in the process of service, and this fatigue damage of internal structure can be induced by electrical signal output. The characteristics of electrical signal variation of conductive asphalt concrete in the process of fatigue cracking were researched in this paper. The whole process was clearly divided into three stages according to resistance changes, and the development of fatigue damage wasn't obvious in stage I and stage II, while in stage III, the synchronicity between the resistance and damage began to appear. Thus, fatigue damage variable D and initial damage value $D_0$ represented by the functions of resistance were introduced in stage III. After calculating the initial damage value $D_0$ under different stress levels, it was concluded that the initial damage value $D_0$ had no noticeable change, just ranged between 0.24 and 0.25. This value represented a critical point which could be used to inform the repair time of early fatigue damage in the conductive asphalt pavement.

Mechanical Performance of Fiber Reinforced Lean Concrete for Subbase of Newly Developed Multi-Functional Composite Pavement System (다기능 복합 포장용 섬유보강 콘크리트 기층 재료의 역학적 특성평가)

  • Jang, Young-Jae;Park, Cheol-Woo;Park, Young-Hwan;Jung, Woo-Tai;Choi, Sung-Yong;Yoo, Pyeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.21-29
    • /
    • 2012
  • PURPOSES: This study is to investigate the mechanical performance of the fiber reinforced lean concrete with respect to different types of fibers. METHODS: Increased vehicle weight and other causes from the exposed conditions have accelerated the deteriorations of road pavement. A new multi-functional composite pavement system is being developed recently in order to extend service life and upgrade the pavement. A variety of tests were conducted before and after hardening of the concrete. RESULTS: From the test results, it was found that the use of different types of fibers did not affect the compressive strength development. This might be due to the inherent property of the lean concrete. When steel fibers were used relatively greater flexural strength and flexural fracture toughness were developed. Also addition of fly ash by replacing a part of Portland cement the fracture toughness was slightly increased. CONCLUSIONS: It has been known that the addition of fibers and use of mineral admixture can be positively considered in the development of multi-functional composite pavement system as its required mechanical performance is obtained.