• Title/Summary/Keyword: Concrete resistivity

Search Result 132, Processing Time 0.04 seconds

A study on surface resistivity of GFRP reinforced precast slab track (유리섬유보강 슬래브의 표면저항특성 고찰)

  • Moon, Do-Young;Zi, Goang-Seup;Lee, Seung-Jung;Kim, Yoo-Bong;Baek, In-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2435-2438
    • /
    • 2011
  • Steel bar is used for as a reinforcing material in a concrete slab track. Bacuase the steel re-bar could provide passes for current transition, all the cross points of steel re-bars should be insulated by using plastic materials. This is due to the loss of signal intensity of track-circuit. In this study, GFRP bars are adopted in place of the traditional steel reinforcing bars for a concrete slab track to minimize the loss of the signal intensity. In order to evaluate the replacing effect on eletrical characteristic of slab track, measurements of surface resistivity are conducted on steel and GFRP reinforced precast slab tracks. In the results, the GFRP reinforced slab strack shows the higher resistivity than the steel reinforced slab track.

  • PDF

Probing of Steel Bar Location inside Concrete using Multi-electrode Array (다전극 배열을 이용한 콘크리트 매립 철근의 위치탐사)

  • 이형우;임홍철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.663-666
    • /
    • 2003
  • Using numerical analysis modeling of Multi-electrode Array that could be applied to the corrosion state measurement of a reinforcing steel bar in concrete, the steel bar location inside concrete can be probed by the investigation of the change of the measured impedance from concrete surface determined by the electrical impedance of interface between the steel bar and concrete, the electrical resistivity of concrete, the array of electrodes and the relative location and diameter of the steel bar.

  • PDF

Experimental Investigation of Electrochemical Corrosion and Chloride Penetration of Concrete Incorporating Colloidal Nanosilica and Silica Fume

  • Garg, Rishav;Garg, Rajni;Singla, Sandeep
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.440-452
    • /
    • 2021
  • Enhancement of durability and reduction of maintenance cost of concrete, with the implementation of various approaches, has always been a matter of concern to researchers. The integration of pozzolans as a substitute for cement into the concrete is one of the most desirable technique. Silica fume (SF) and colloidal nanosilica (CS) have received a great deal of interest from researchers with their significant performance in improving the durability of concrete. The synergistic role of the micro and nano-silica particles in improving the main characteristics of cemented materials needs to be investigated. This work aims to examine the utility of partial substitution of cement by SF and CS in binary and ternary blends in the improvement of the durability characteristics linked to resistance for electrochemical corrosion using electrical resistivity and half-cell potential analysis and chloride penetration trough rapid chloride penetration test. Furthermore, the effects of this silica mixture on the compressive strength of concrete under normal and aggressive environment have also been investigated. Based on the maximum compression strength of the concrete, the optimal cement substituent ratios have been obtained as 12% SF and 1.5% CS for binary blends. The optimal CS and SF combination mixing ratios has been obtained as 1.0% and 12% respectively for ternary blends. The ternary blends with substitution of cement by optimal percentage of CS and SF exhibited decreased rate for electrochemical corrosion. The strength and durability studies were found in consistence with the microstructural analysis signifying the beneficiary role of CS and SF in upgrading the performance of concrete.

Evaluation of Dispersion of Activated Carbon Fiber in Mortar Using Electrical Resistivity Method (전기저항 측정을 통한 모르타르 내의 섬유활성탄의 분산성 평가)

  • Lee, Bo Yeon;Lee, Jae Seoung
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.283-290
    • /
    • 2017
  • Various types of fibers are utilized in cementitious materials in order to improve their performances. Here, the extent of fiber dispersion is of key importance regardless of the purpose of using fiber. In this study, activated carbon fiber dispersion in mortar samples was evaluated using electrical resistivity method. In particular, the extent of fiber dispersion was compared per mixing methods and surface treatments. The results suggest that the surface resistivity method is capable of evaluating dispersion of activated carbon fiber and that ultrasound dispersion method is superior to mortar mixer and hand mixer method. The use of superplasticizer improved dispersion but acid treatment was not effective.

Predicting Damage in a Concrete Structure Using Acoustic Emission and Electrical Resistivity for a Low and Intermediate Level Nuclear Waste Repository

  • Hong, Chang-Ho;Kim, Jin-Seop;Lee, Hang-Lo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.197-204
    • /
    • 2021
  • In this study, the well-known non-destructive acoustic emission (AE) and electrical resistivity methods were employed to predict quantitative damage in the silo structure of the Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (WLDC), Gyeongju, South Korea. Brazilian tensile test was conducted with a fully saturated specimen with a composition identical to that of the WLDC silo concrete. Bi-axial strain gauges, AE sensors, and electrodes were attached to the surface of the specimen to monitor changes. Both the AE hit and electrical resistance values helped in the anticipation of imminent specimen failure, which was further confirmed using a strain gauge. The quantitative damage (or damage variable) was defined according to the AE hits and electrical resistance and analyzed with stress ratio variations. Approximately 75% of the damage occurred when the stress ratio exceeded 0.5. Quantitative damage from AE hits and electrical resistance showed a good correlation (R = 0.988, RMSE = 0.044). This implies that AE and electrical resistivity can be complementarily used for damage assessment of the structure. In future, damage to dry and heated specimens will be examined using AE hits and electrical resistance, and the results will be compared with those from this study.

Study on durability of densified high-performance lightweight aggregate concrete

  • Wang, H.Y.
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.499-510
    • /
    • 2007
  • The densified mixture design algorithm (DMDA) was employed to manufacture high-performance lightweight concrete (LWAC) using silt dredged from reservoirs in southern Taiwan. Dredged silt undergoing hydration and high-temperature sintering was made into a lightweight aggregate for concrete mixing. The workability and durability of the resulting concrete were examined. The LWAC made from dredged silt had high flowability, which implies good workability. Additionally, the LWAC also had good compressive strength and anti-corrosion properties, high surface electrical resistivity and ultrasonic pulse velocity as well as low chloride penetration, all of which are indicators of good durability.

Thermal Resistivity Measurement of Recycled Aggregates and Comparison with Conventional Prediction Model (송배전관로 되메움용 순환골재의 열저항 측정 및 기존 열저항 예측 모델과의 비교)

  • Wi, Jihae;Hong, Sungyun;Choi, Hangseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.199.1-199.1
    • /
    • 2010
  • Use of recycled aggregates that are constituents of concrete or asphalt-based structures has become popular because the recycling is an eco-friendly way to overcome the depletion of natural aggregates. In order to adopt the recycled aggregates for backfilling a power transmission pipeline trench, their thermal resistivity should be low enough to prevent thermal runaway in the transmission system. In this study, a series of laboratory tests with QTM-500 and KD2 Pro was performed to measure the thermal resistivity of recycled aggregates prepared from various sources. Relationships between the thermal resistivity of recycled aggregates and the water content have been obtained with consideration of compaction effort. Similar to natural soils, the thermal resistivity of the recycled aggregates decreases with increasing the water content. In addition, this study compared the experimental data with conventional prediction models for the thermal resistivity in the literature, which suggests the availability of the recycled aggregates as backfill material substituting for natural aggregates when backfilling the power transmission pipeline trench.

  • PDF

Evaluation of Durabilities in Ruined RC Bridge (철근콘크리트 철거교량의 내구성 평가)

  • 유환국;김국한;류금성;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.655-658
    • /
    • 1999
  • An experimental investigation on the ruined RC bridge with 30 years old has been conducted to estimate the durabilities. The ruined RC bridge estimated in this study was located at Kyung-Bu Express Way. First, concrete strength and durability characteristics such as concrete resistivity, chloride content were estimated. Second, it was to test reinforcing corrosion embedded in slab of bridge. And, third, tensile strength and yield strength of reinforcing bar corroded and not corroded were estimated. This bridge inspection provides the most common cause of defects and deterioration and the results of this inspections give more specific information than those of laboratory inspections do.

  • PDF

Study of changes in the kinetic parameters of corrosion on the macrocell current induced by the repair of reinforced concrete structures - Results of numerical simulation

  • Mostafa Haghtalab;Vahed Ghiasi;Aliakbar Shirzadi Javid
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.287-302
    • /
    • 2023
  • Corrosion of reinforcing bars in reinforced concrete structures due to chloride attack in environments containing chloride ions is one of the most important factors in the destruction of concrete structures. According to the abundant reports that the corrosion rate around the repair area has increased due to the macro-cell current known as the incipient anode, it is necessary to understand the effective parameters. The main objective of this paper is to investigate the effect of the kinetic parameters of corrosion including the cathodic Tafel slope, exchange current density, and equilibrium potential in repair materials on the total corrosion rate and maximum corrosion rate in the patch repair system. With the numerical simulation of the patch repair system and concerning the effect of parameters such as electromotive force (substrate concrete activity level), length of repair area, and resistivity of substrate and repair concrete, and with constant other parameters, the sensitivity of the macro-cell current caused by changes in the kinetic parameters of corrosion of the repairing materials has been investigated. The results show that the maximum effect on the macro-cell current values occurred with the change of cathodic Tafel slope, and the effect change of exchange current density and the equilibrium potential is almost the same. In the low repair extant and low resistivity of the repairing materials, with the increase in the electromotive force (degree of substrate concrete activity) of the patch repair system, the sensitivity of the total corrosion current reduces with the reduction in the cathode Tafel slope. The overall corrosion current will be very sensitive to changes in the kinetic parameters of corrosion. The change in the cathodic Tafel slope from 0.16 to 0.12 V/dec and in 300 mV the electromotive force will translate into an increase of 200% of the total corrosion current. While the percentage of this change in currency density and equilibrium potential is 53 and 43 percent, respectively. Moreover, by increasing the electro-motive force, the sensitivity of the total corrosion current decreases or becomes constant. The maximum corrosion does not change significantly based on the modification of the corrosion kinetic parameters and the modification will not affect the maximum corrosion in the repair system. Given that the macro-cell current in addition to the repair geometry is influenced by the sections of reactions of cathodic, anodic, and ohmic drop in repair and base concrete materials, in different parameters depending on the dominance of each section, the sensitivity of the total current and maximum corrosion in each scenario will be different.

Study on engineering properties of ready-mixed soil and slag

  • Chen, Tung-Tsan;Ho, Chun-Ling;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.531-538
    • /
    • 2018
  • The slag through sieve #4 replaced the natural fine aggregate in different proportions (0-50%) to make ready-mixed soil and slag (RMSAS). The fresh properties studied, and the concrete specimens were produced to test the hardened properties at different ages. Results showed that the workability of RMSAS decreases when the replacement increases. The unit weight increases with the replacement. The setting time extends when the replacement decreases and shortens when the replacement increases. The compressive strength, ultrasonic pulse velocity and hammer rebound value increase with the replacement. However, the high-replacement results decrease because of the expansion factor at late age. Resistivity is close and less than $20k{\Omega}-cm$. After the industrial of steelmaking by-products are processed properly, they can be used in civil engineering, not only as a substitute for natural resources and to reduce costs, but also to provide environmental protection.